试题

题目:
青果学院(2012·西宁)如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标
(8,0)或(
25
8
,0)
(8,0)或(
25
8
,0)

答案
(8,0)或(
25
8
,0)

解:∵四边形ABCD是菱形,
∴AC⊥BD,OA=
1
2
AC=
1
2
×12=6,OD=
1
2
BD=
1
2
×16=8,
∴在Rt△AOD中,AD=
OA2+OD2
=10,
∵E为AD中点,
∴OE=
1
2
AD=
1
2
×10=5,
①当OP=OE时,P点坐标(-5,0)和(5,0);
②当OE=PE时,此时点P与D点重合,即P点坐标为(8,0);
③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,
∴EK∥OA,青果学院
∴EK:OA=ED:AD=1:2,
∴EK=
1
2
OA=3,
∴OK=
OE2-EK2
=4,
∵∠PFO=∠EKO=90°,∠POF=∠EOK,
∴△POF∽△EOK,
∴OP:OE=OF:OK,
即OP:5=
5
2
:4,
解得:OP=
25
8

∴P点坐标为(
25
8
,0).
∴其余所有符合这个条件的P点坐标为:(8,0)或(
25
8
,0).
故答案为:(8,0)或(
25
8
,0).
考点梳理
菱形的性质;坐标与图形性质;等腰三角形的判定.
由在菱形ABCD中,AC=12,BD=16,E为AD中点,根据菱形的性质与直角三角形的性质,易求得OE的长,然后分别从①当OP=OE时,②当OE=PE时,③当OP=EP时去分析求解即可求得答案.
此题考查了菱形的性质、勾股定理、直角三角形的性质以及等腰三角形的性质.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.
压轴题.
找相似题