试题
题目:
已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.
(1)求证:AE=AF;
(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.
答案
证明:(1)∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D,
又∵BE=DF,
∴△ABE≌△ADF,
∴AE=AF;
(2)连接AC,
∵AE垂直平分BC,AF垂直平分CD,
∴AB=AC=AD.
∵AB=BC=CD=DA,
∴△ABC和△ACD都是等边三角形.
∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.
∴∠EAF=∠CAE+∠CAF=60°
又∵AE=AF,
∴△AEF是等边三角形.
证明:(1)∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D,
又∵BE=DF,
∴△ABE≌△ADF,
∴AE=AF;
(2)连接AC,
∵AE垂直平分BC,AF垂直平分CD,
∴AB=AC=AD.
∵AB=BC=CD=DA,
∴△ABC和△ACD都是等边三角形.
∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.
∴∠EAF=∠CAE+∠CAF=60°
又∵AE=AF,
∴△AEF是等边三角形.
考点梳理
考点
分析
点评
专题
菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.
(1)由已知条件证明△ABE≌△ADF,根据全等三角形的性质可得到AE=AF;
(2)连接AC,根据有一个角为60°的等腰三角形是等边三角形即可得证.
本题考查了菱形的性质、全等三角形的判定和性质、垂直平分线的性质以及等腰三角形的判定和性质等边三角形的判定和性质,题目的综合性很强,难度中等.
证明题.
找相似题
(2013·淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )
(2013·扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )
(2013·随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是( )
(2013·本溪)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有( )
(2012·山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )