试题
题目:
(2010·贵港)如图所示,在对角线长分别为12和16的菱形ABCD中,E、F分别是边AB、AD的中点,H是对角线BD上的任意一点,则HE+HF的最小值是( )
A.14
B.28
C.6
D.10
答案
D
解:如图:
作EE′⊥BD交BC于E′,连接E′F,
则E′F就是HE+HF的最小值,
∵E、F分别是边AB、AD的中点,
∴E′F
∥
.
AB,
而由已知可得AB=10,
∴HE+HF的最小值为10.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题;菱形的性质.
要求HE+HF的最小值,HE、HF不能直接求,可考虑通过作辅助线转化HE、HF的值,从而找出其最小值求解.
考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.
计算题;几何综合题;压轴题.
找相似题
(2013·淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )
(2013·扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )
(2013·随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是( )
(2013·本溪)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有( )
(2012·山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )