试题
题目:
(2011·济南)如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( )
A.2
B.2
3
C.4
D.4
3
答案
C
解:∵菱形ABCD的周长是16,
∴AB=AD=CD=BC=4,
∵∠A=60°,
∴△ABD是等边三角形,
∴AB=AD=BD=4.
∴对角线BD的长度为4.
故选C.
考点梳理
考点
分析
点评
菱形的性质.
由菱形ABCD的周长是16,即可求得AB=AD=4,又由∠A=60°,即可证得△ABD是等边三角形,则可求得对角线BD的长度.
此题考查了菱形的性质与等边三角形的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.
找相似题
(2013·淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )
(2013·扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于( )
(2013·随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是( )
(2013·本溪)如图,在菱形ABCD中,∠BAD=2∠B,E,F分别为BC,CD的中点,连接AE、AC、AF,则图中与△ABE全等的三角形(△ABE除外)有( )
(2012·山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )