试题

题目:
青果学院(2012·东莞模拟)如图,已知△ABC中,AB=AC,
(1)请用尺规作图的方法找出线段BC的中点,
(2)若AB边长为6,∠B=30°,求△ABC的面积.
答案
解:(1)如图所示:
青果学院

(2)如图所示,作AD⊥BC于点D:
青果学院
∵AB边长为6,∠B=30°,
∴AD=
1
2
×6=3,
∴BD=
62-32
=3
3
,则BC=6
3

∴△ABC的面积为:
1
2
×3×6
3
=9
3

解:(1)如图所示:
青果学院

(2)如图所示,作AD⊥BC于点D:
青果学院
∵AB边长为6,∠B=30°,
∴AD=
1
2
×6=3,
∴BD=
62-32
=3
3
,则BC=6
3

∴△ABC的面积为:
1
2
×3×6
3
=9
3
考点梳理
作图—复杂作图;等腰三角形的性质;含30度角的直角三角形.
(1)作出BC的垂直平分线交点为D即是BC中点;
(2)作AD⊥BC,构造直角△ABD,利用“30°的角所对的直角边是斜边的一半”求出AD,BD的长,再利用三角形的面积公式解答.
此题主要考查了复杂作图以及含30°角的直角三角形,关键是根据题意,构造直角三角形,利用30°的角所对的直角边是斜边的一半解答.
找相似题