试题
题目:
如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,
求证:BC=3AD.
答案
证明:在△ABC中,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
又∵AD⊥AC,
∴∠DAC=90°,
∵∠C=30°
∴CD=2AD,∠BAD=∠B=30°,
∴AD=DB,
∴BC=CD+BD=AD+DC=AD+2AD=3AD.
证明:在△ABC中,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
又∵AD⊥AC,
∴∠DAC=90°,
∵∠C=30°
∴CD=2AD,∠BAD=∠B=30°,
∴AD=DB,
∴BC=CD+BD=AD+DC=AD+2AD=3AD.
考点梳理
考点
分析
点评
专题
含30度角的直角三角形;等腰三角形的性质.
已知∠BAC=120°,AB=AC,∠B=∠C=30°,可得AD⊥AC,有CD=2AD,AD=BD.即可得证.
本题考查了直角三角形的有关知识和等腰三角形的性质定理.
证明题.
找相似题
(2012·河池)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为( )
如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是( )
如图,山坡AC与水平面AB成30°的角,沿山坡AC每往上爬100米,则竖直高度上升( )
已知等腰三角形一腰上的高线等于另一腰长的一半,那么这个等腰三角形的一个底角等于( )
在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB边于E,则AC与DC的关系是( )