数学
如图,在△ABC中,如果DE∥BC,AD=3,AE=2,BD=4.
求AC、EC的长.
如图,AC⊥BC,CD⊥AB,BC⊥DE,若AC=6cm,DE=4cm,求CD之长.
如图①,在6×12的方格纸MNEF中,每个小正方形的边长都是1.Rt△ABC的顶点C与N重合,两直角边AC、BC分别在MN、NE上,且AC=3,BC=2.现Rt△ABC以每秒1个单位长的速度向右平移,当点B移动至点E时,Rt△ABC停止移动.
(1)请你在答题卡所附的6×12的方格纸①中,画出Rt△ABC向右平移4秒时所在的图形;
(2)如图②,甲说,在Rt△ABC向右平移的过程中,△ABF的面积是始终不变;乙说,△ABF的面积越来越大.你认为他们说的,谁对,并说出你判断的理由.
(3)如图②,在Rt△ABC向右平移的过程中,△ABF能否成为直角三角形?如果能,请求出相应的时间t;如果不能,请简要说明理由.
(附加题)工人师傅有两块板材边角料,其中一块是边长60cm的正方形板材;另一块是上底为30cm,下底为120cm,高为60cm的直角梯形板材(如下图①).工人师傅想将这两块板材裁成两块全等的矩形板材,他将两块板材叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板材的重叠部分为五边形ABCFE围成的区域(如图②).由于受材料纹理限制,要求裁出的矩形要以点B为一个顶点.
(1)利用图②,求FC的长;
(2)如图③,若矩形的一个顶点P在线段EF上,P点到BG的距离为PN,试证明:
PN
NG
=
2
3
;
(3)利用图③,求顶点B所对的顶点P到BC的距离PN为多少时,矩形PMBN的面积最大?最大面积是多少?
如图,是一块三角形土地,它的底边BC长为100米,高AH为80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上,若大楼的宽是40米,求这个矩形的面积.
如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y 轴上,OA=OD=2,OC=OE=4,2OB=OD,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.
如图,已知直线AB:
y=
4
3
x+b
交x轴于点A(-3,0),交y轴于点B,过点B作BC⊥AB交x轴于点C.
(1)试证明:△ABC∽△AOB;
(2)求△ABC的周长.
在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD得中点.
(1)证明△ADQ∽△QCP;(2)求证:AQ⊥QP.
如图所示,△ABC中,∠C=90°,BC=8cm,AC:AB=3:5,点P从点B出发沿BC向点C以2cm/s的速度移动,点Q从点C出发沿CA向点A以1cm/s的速度移动,如果P、Q分别从B、C同时出发:
(1)经过多少秒后,△CPQ的面积为8cm?
(2)经过多少秒时,以C、P、Q为顶点的三角形恰与△ABC相似.
已知:如图,△ABC中,AE=CE,BC=CD,求证:ED=3EF.
第一页
上一页
151
152
153
154
155
下一页
最后一页
952463
952464
952465
952466
952467
952468
952469
952470
952471
952472