数学
(2010·沙河口区一模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,P为BC所在直线上一点,D为AB所在直线上一点,操作:当PA=PD时,过点D作BC所在直线的垂线,垂足为E.
(1)猜测线段PE与线段BC的数量关系;
(2)请你利用图②,图③,选择不同位置的点P、D按上述方法操作;
(3)经历(2)之后,如果认为你猜测的结论是正确的,请加以证明;如果认为你猜测的结论是错误的,请说明理由.
(2010·渝中区模拟)如图①,已知点D在AC上,△ABC和△ADE都是等腰直角三角形,点M为EC的中点.
(1)求证:△BMD为等腰直角三角形;
(2)将图①中的△ADE绕点A逆时针旋转45°,如图②所示,则(1)题中的结论“△BMD为等腰直角三角形”是否仍然成立?请说明理由.
(2011·三元区质检)如图甲,点C是线段AB的中点,DE⊥AC于点E,且DE=AE=EC,FC⊥CB于点G,且FG=CG=GB.
(1)求证:△DCF是等腰直角三角形;
(2)将图甲中的AC绕点C逆时针旋转一个锐角,点H是AB的中点,如图乙所示.求证:△DHF是等腰直角三角形.
(2012·安岳县模拟)在直角三角形ABC中,∠ACB=90°,AC=BC=1.过点B作直线EF⊥BC,点P为线段AB上一动点(与点A,B均不重合),过点P作MN∥BC并交AC于点M,交EF于点N,作PD⊥PC,交直线EF于点D.
(1)若点D在线段NB上(如图1)求证:△PCM≌△DPN;
(2)若点D在线段NB延长线上(如图2)且BP=BD,求AP的长;
(3)设AP=x,且P、C、D、B为顶点的四边形的面积为y,请直接写出y与x的函数关系式.
(2012·葫芦岛二模)已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.
(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为
BD=
2
BM
BD=
2
BM
;
(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.
(2012·南岗区二模)如图,已知△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,求证:AD=CE.
(2012·新化县二模)如图,△PAB与△PCD都是等腰直角三角形,∠APB=∠CPD=90°,连接AC、BD,试猜想线段AC和BD的数量关系,并证明你的猜想.
(2013·临汾二模)操作与证明
把两个全等的含45°角的三角板按如图所示的位置放置,使B、A、D在一条直线上,C、A、E在一条直线上,过点C作CM⊥BD于M,过点E作EF∥BD;直线CM与EF相交于点F.
(1)求证:△CEF是等腰直角三角形.
猜想与发现
(2)在图1的条件下,CF与BD的数量关系为
CF=
1
2
BD
CF=
1
2
BD
.
(3)如图2若把图1中Rt△ADE换为Rt△ABC不全等但相似的三角板时,其他条件不变,此时CF与BD的数量关系为
CF=
1
2
BD
CF=
1
2
BD
.
拓展与探究
(4)如图3若将图1中的两块三角板换成任意两个全等的直角三角形(Rt△ABC≌Rt△DAE),使锐角顶点A重合,点C、A、E在一条直线上,连接BD交AC于G,过点C作CM⊥BD于M,过点E作EF∥BD,直线CM与EF于点F,图1中CF与BD的数量关系还成立吗?若成立,请加以证明;若不成立,请说明你的理由.
(2000·河南)如图,在等腰Rt△ABC中,∠C=90°,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证:BD=CG.
将两块大小不一的透明的等腰直角三角板ABC和DCE如图所示摆放,直角顶点C重合,三角板DCE的一个顶点D在三角板ABC的斜边BA的延长线上,连结BE.
(1)求证:BE=AD;
(2)求证:BE⊥AD.
第一页
上一页
1
2
3
4
5
下一页
最后一页
963612
963613
963614
963615
963616
963617
963618
963619
963620
963621