数学
通过前面的学习,我们知道利用面积的不同表示方法可以写出一个代数恒等式,比如图1的图形,我们可以把它看成长为(b+c),宽为a的长方形,则图形的面积为
a(b+c)
a(b+c)
,我们也可以把它看成是两个长方形组成的图形,则此时,它的面积可以表示为
ab+ac
ab+ac
,所以我们可以得到等式
a(b+c)=ab+ac
a(b+c)=ab+ac
(1)图2的图形蕴涵着一个著名定理,请你运用面积不同的表达方式推导出这个定理.
(2)在图3中,试画一个几何图形,使它的面积能够表示:(a+b)
2
=a
2
+2ab+b
2
(把图形作在方格中)
如图是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三角形均是直角三角形)
古埃及人用下面的方法得到直角三角形,把一根长绳打上等距离的13个结(12段),然后用桩钉钉成一个三角形,如图1,其中∠C便是直角.
(1)请你选择古埃及人得到直角三角形这种方法的理由
B
B
(填A或B)
A.勾股定理:在直角三角形边的两直角边的平方和等于斜边的平方
B.勾股定理逆定理:如果三角形的三边长a、b、c有关系:a
2
+b
2
=c
2
,那么这个三角形是直角三角形
(2)如果三个正整数a、b、c满足a
2
+b
2
=c
2
,那么我们就称 a、b、c是一组勾股数,请你写出一组勾股数
(6,8,10)
(6,8,10)
(3)仿照上面的方法,再结合上面你写出的勾股数,你能否只用绳子,设计一种不同于上面的方法得到一个直角三角形(在图2中,只需画出示意图.)
[定理表述]
请你根据图1中的直角三角形叙述勾股定理(分别用文字语言及符号语言叙述);
[尝试证明]
它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.现以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;
[知识拓展]
如图3所示,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,已知A、B到l的距离分别是3km、4km(即AC=3km,BE=4km),AB=xkm,现设计两种方案:
方案一:如图4所示,AP⊥l于点P,泵站修建在点P处,该方案中管道长度a
1
=AB+AP.
方案二:如图5所示,点A′与点A关于l对称,A′B与l相交于点P,泵站修建在点P处,该方案中管道长度a
2
=AP+BP.①在方案一中,a
1
=
x+3
x+3
km(用含x的式子表示)
②在方案二中,a
2
=
x
2
+48
x
2
+48
km(用含x的式子表示)
③请你分析:要使铺设的输气管道较短,应选择方案一还是方案二.
在一张纸上画两个全等的直角三角形,并把它们拼成如图形状,请用两种方法表示这个梯形的面积.利用你的表示方法,你能得到勾股定理吗?
如图1是我国古代著名的“赵爽弦图”的示意图,它
是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是
76
76
.【写出计算过程给8分】
4个直角三角形拼成右边图形,你能根据图形面积得勾股定理吗?
几千年来,人们给出勾股定理各种证法,有人统计,现在世界上已找到400多种证明方法,古希腊的数学家、哲学家毕达哥拉斯在客厅品茶,不小心推倒了桌上一个火柴盒,就在这一瞬间,他双眼放光,兴奋不已,从此毕达哥拉斯定理(现教材中勾股定理)诞生了.其证法是:如图,
设矩形ABCD为火柴盒侧面,将这个火柴盒移推至A‵B‵C‵D的位置,D不动,若设AB=a、BC=b、DB=c.则梯形A‵B‵BC的面积S
2梯形A‵B‵BC
=
1
2
(a+b)(a+b)=
1
2
(a+b)
2
,且又知梯形S
梯形A‵B‵BC
=S
△ABD
+S
△DBB‵
+S
△BCD
=
1
2
ab+
1
2
c
2
+
1
2
ab,故有
1
2
(a+b)
2
=
1
2
ab+
1
2
c
2
+
1
2
ab,则a
2
+b
2
+2ab=c
2
+2ab,即a
2
+b
2
=c
2
.
请你再写出一种证明方法:
用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的.观察图,你能验证c
2
=a
2
+b
2
吗?把你的验证过程写下来,并与同伴进行交流.
如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)
第一页
上一页
134
135
136
137
138
下一页
最后一页
1327040
1327043
1327046
1327049
1327052
1327055
1327058
1327060
1327063
1327066