数学
如图,小明和小月两家位于A,B两处隔河相望,要测得两家之间的距离,小明设计方案如下:
①从点A出发沿河话一条射线AE;
②在AE上截取AF=FE;
③过E作EC∥AB,使得B,F,C点在同一直线上;
④则CE的长就是AB之间的距离.
(1)请你说明小明的设计原理;
(2)如果不借助测量仪,小明的设计中哪一步难以实现;
(3)你能设计出更好的方案吗?
探究问题
(1)方法感悟:
一班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
方案(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;感悟解题方法,并完成下列填空:
解:在如图所示的两个三角形△DEC和△ABC中:DC=AC,∠
ACB
ACB
=∠
DCE
DCE
(对顶角相等),EC=BC,∴△DEC≌△ABC
(SAS)
(SAS)
,∴DE=AB(全等三角形对应边相等),即DE的距离即为AB的长.
(2)方法迁移:
方案(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.请你说明理由.
(3)问题拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是
作∠ABC=∠EDC=90°
作∠ABC=∠EDC=90°
;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?
成立
成立
.
某校八年级(1)班学生参加社会实践活动,为测量一池塘两端A、B的距离,设计了如下方案.先过B点作AB的垂线BM,再在BM上取O、C两点,使BO=OC,接着过点C作BC的垂线CD,交AO的延长线于D,则测出CD的长即为A、B的距离,此方案是否切实可行?理由是什么?
防洪堤坝在抗洪救灾中起到重要的作用,右图中的四边形ABCD是一防洪堤坝的横截面,已知AE⊥CD,BF⊥CD,∠D=∠C,DF=CE,请说明AD=BC的理由.
张师傅不小心将一块三角形玻璃打破成如图中的三块,他准备去店里重新配置一块与原来一模一样的,最省事的做法是( )
小明不慎将三角形模具打碎为四块,若他只带其中一块到商店去,就能还配一块与原来一模一样的三角形模具,应带( )块去合适.
如图,某同学把一块三角形玻璃板打破成三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他只需要带( )
王老师一块教学用的三角形玻璃不小心打破了,他想再到玻璃店划一块同样大小的三角形玻璃,为了方便他只要带哪一块就可以( )
曹冲称象的故事中,聪明的曹冲知道大象的体重不能直接去称,就把称大象的重量转化为称石头的重量:他先把大象赶到船上,得到船吃水的深度;再把大象赶下船,往船上装一块块的石头,达到相同的吃水深度,于是,称出石头的重量即可得到大象的重量.曹冲的思维方法就是转化的思想方法,该思想方法在数学中有着广泛而重要的应用,特别是在解决一些实际问题时,应用就更为广泛了.请你根据自己所学的数学知识,联系生活实际,编写一道用转化的思想方法解决实际问题的题目,并说明理由.
如图,小明和小华两家位于A、B两处隔河相望,要测量两家之间的距离,小明的设计方案如下:从B点出发沿河岸画一条射线BF,在BF上截取BC=CD,过点D作DE∥AB.使E、C、A在同一条直线上,则DE的长就是A、B两点之间的距离.
(1)请你说明他这个设计的原理;
(2)你能设计出更好的方案吗?
第一页
上一页
1
2
3
4
5
下一页
最后一页
946824
946825
946826
946827
946828
946829
946830
946831
946832
946833