数学
如图所示,正△ABC为某一住宅区的所占区域,其周长为800m,为了美化环境,计划将住宅区边缘5m内(虚线以内,△ABC之外)作为绿化带,则绿化面积约为( )
设P是等边△ABC内任意一点,从点P作三边的垂线PD、PE、PF,点D、E、F是垂足,则
PD+PE+PF
AB+BC+CA
等于( )
在等边△ABC的顶点A,C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过t min后,它们分别爬到了D,E处.DC和BE交于点F.
(1)求证:△ACD≌△CBE;
(2)蜗牛在爬行过程中,DC和BE所成的∠BFC的大小有无变化?请证明你的结论.
如图,在△ABC中∠C是锐角,BC=a,AC=b.
(1)证明:
S
△ABC
=
1
2
absinC
(2)△ABC是等边三角形,边长为4,求△ABC的面积.
如图,△ABC、△ADE是等边三角形,B、C、D在同一直线上.
求证:(1)CE=AC+DC;(2)∠ECD=60°.
△ABC是边长为2的等边三角形,点P、Q分别从A、C两点同时出发做匀速直线运动,且它们的速度相等.已知点P沿边射线AB运动,点Q沿边BC的延长线运动,设PQ与直线AC相交于点D,作PE⊥AC,垂足是E.
(1)当点P在线段AB上运动时,求证:2DE=AC;
(2)当点P、Q继续运动时,(1)中的结论还成立吗?若成立在备图中画出图形并证明.如不成立指出DE与AC的关系并说明理由.
如图,△ABC与△DCE都是等边三角形,且点B、C、E在同一条直线上,
(1)试问AE与BD的大小关系,并对你所得的结论说明理由.
(2)试问AG与BF的大小关系,并对你所得的结论说明理由.
(3)试问FG与BE有何位置关系,并对你所得的结论说明理由.
△ABC是一个等边三角形,点D,E分别在AB,AC上,且AD=CE,BE和CD相交于P,求∠BPD的度数.
△ABC是边长为4的等边三角形,在射线AB和BC上分别有动点P、Q,且AP=CQ,连接PQ交直线AC于点D,作PE⊥AC,垂足为E.
(1)如图,当点P在边AB(与点A、B不重合)上,问:
①线段PD与线段DQ之间有怎样的大小关系?试证明你的结论.
②随着点P、Q的移动,线段DE的长能否确定?若能,求出DE的长;若不能,简要说明理由;
(2)当点P在射线AB上,若设AP=x,CD=y,求:
①y与x之间的函数关系式,并写出x的取值范围;
②当x为何值时,△PCQ的面积与△ABC的面积相等.
如图①,分别以AE、BE为边在AB的同侧作等边△ADE和等边△BCE,AB、BC、CD、DA的中点分别为P、Q、M、N.
(1)判断四边形PQMN的形状,并说明你的理由;
(2)如图②,将△BCE绕着点E顺时针旋转,其它条件不变,判断四边形PQMN的形状,并说明你的理由.
第一页
上一页
135
136
137
138
139
下一页
最后一页
1311807
1311824
1311833
1311842
1311844
1311852
1311856
1311864
1311867
1311870