数学
如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的面积为( )
如图,三棱柱ABC-A
1
B
1
C
1
的侧棱长和底面边长均为4,且侧棱AA
1
⊥底面ABC,其正(主)视图是边长为4的正方形,则此三棱柱侧(左)视图的面积为( )
如图,△ABC是等边三角形,若在它边上的一点与这边所对角的顶点的连线恰好将△ABC分成两个全等三角形,则这样的点共有( )
如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是( )
如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与CD交于点G,AC与BD交于点F,连接FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④CF=CG.其中正确结论的个数( )
如图,△ABC及△CDE均为等边三角形,B、C、E、在同一直线上.AE与BD相交于O,则下列结论:①△ACE≌△BCD;②∠AOB=∠ACB;③AC∥DE;④OC平分∠ACD中正确的有( )
如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的有?
由于水资源缺乏,B、C两地不得不从黄河上的扬水站A处引水,这就需要在A、B、C之间铺设地下管道,有人设计了3种方案:如图1中实线表示管道铺设路线,在图2中,AD⊥BC于D,在图3中,OA=OB=OC,且交点到顶点A的距离为三角形高的
2
3
,为减少渗漏、节约水资源,并降低工程造价,铺设路线尽量缩短.已知ABC是一个边长为a的等边三角形,请你通过计算,判断哪种铺高方案好?
已知△ABC为等边三角形,点P在AB上,以CP为边长作等边三角形△PCE.求证:AE∥BC.
如图所示,△ABC和△ECD均为等边三角形,B、C、D三点共线,AD与BE交于点O.求∠BOD的度数.
第一页
上一页
126
127
128
129
130
下一页
最后一页
1311252
1311262
1311268
1311272
1311281
1311284
1311290
1311295
1311310
1311316