数学
(2013·衡水二模)如图,在梯形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC,分别交边AB,CD于点E、F,连接CE,AF.
(1)求证:四边形AECF是菱形;
(2)若EF=4,tan∠OAE=
2
3
,求四边形AECF的面积.
(2013·怀柔区一模)如图,在△ABC中,AD是BC边上的中线,分别过点C、B作射线AD的垂线段,垂足分别为E、F.求证:BF=CE.
(2013·济宁三模)(1)一个人由山底爬到山顶,需先爬45°的山坡200m,再爬30°的山坡300m,求山的高度(结果可保留根号).
(2)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.
你添加的条件是:
AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等
AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等
.
证明:
(2013·建邺区一模)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)试判断:四边形AECD的形状,并证明你的结论.
(2013·莒南县二模)如图,在·ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论.
(2013·兰州一模) 如图,Rt△ABC中,∠C=90°,将△ABC沿AB向下翻折后,再绕点A按顺时针方向旋转α度(α<∠BAC),得到Rt△ADE,其中斜边AE交BC于点F,直角边DE分别交AB,BC于点G,H.
(1)判断∠CAF与∠DAG是否相等,并说明理由.
(2)求证:△ACF≌△ADG.
(2013·乐山模拟)已知:如图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.
证明:OE⊥AB.
(2013·门头沟区二模)已知:如图,在△ABC中,∠ABC=90°,BD⊥AC于点D,点E在BC的延长线上,且BE=AB,过点E作EF⊥BE,与BD的延长线交于点F.
求证:BC=EF.
(2013·沛县一模)已知:如图,·ABCD中,∠ABC的平分线交AD于E,∠CDA的平分线交BC于F.
(1)求证:△ABE≌△CDF;
(2)连接EF、BD,求证:EF与BD互相平分.
(2013·青铜峡市模拟)如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA.
求证:△ADE≌△BCE.
第一页
上一页
59
60
61
62
63
下一页
最后一页
969074
969075
969076
969077
969078
969079
969080
969081
969082
969083