数学
(2011·防城港)如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.
(1)求证:AB是⊙O的切线;
(2)若D为OA的中点,阴影部分的面积为
3
-
π
3
,求⊙O的半径r.
(2011·本溪)如图,⊙O的直径AB与弦CD(不是直径)相交于点E,且CE=DE,过点B作CD的平行线交AD延长线于点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为4,sin∠BCD=
3
4
,求CD的长?
(2011·安顺)已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为18,cosB=
1
3
,求DE的长.
(2009·辽阳)如图,已知AC是⊙O的弦,AB为⊙0的直径,点D在AB的延长线上,∠A=∠D=30°
(1)求证:CD是⊙O的切线;
(2)当BD=5时,求⊙O的半径长.
(2008·天门)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,
交AC的延长线于点F.
(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=
4
5
,CF=1,求⊙O的半径及EF的长.
(2005·山西)已知⊙O
1
和⊙O
2
相交于A、B两点,过A点作⊙O
1
的切线交⊙O
2
于点E,连接EB并延长交⊙O
1
于点C,直
线CA交⊙O
2
于点D.
(1)如图,当点D与点A不重合时,试猜想线段EA=ED是否成立?证明你的结论;
(2)当点D与点A重合时,直线AC与⊙O
2
有怎样的位置关系?此时若BC=2,CE=8,求⊙O
1
的直径.
(2004·深圳)在等腰梯形ABCD中,AD∥BC,AB=DC,且BC=2.以CD为直径作⊙O′交AD于点E,过
点E作EF⊥AB于点F.建立如图所示的平面直角坐标系,已知A、B两点坐标分别为A(2,0)、B(0,
2
3
).
(1)求C、D两点的坐标;
(2)求证:EF为⊙O′的切线;
(3)将梯形ABCD绕点A旋转180°到A′B′C′D′,直线CD上是否存在点P,使以点P为圆心,PD为半径的⊙P与直线C′D′相切?如果存在,请求出P点坐标;如果不存在,请说明理由.
(1999·广州)如图,等边△ABC的面积为S,⊙O是它的外接圆,点P是
BC
的中点.
(1)试判断过点C所作⊙O的切线与直线AB是否相交,并证明你的结论;
(2)设直线CP与AB相交于点D,过点B作BE⊥CD,垂足为E,证明BE是⊙O的切线,并求△BDE的面积.
(2013·镇江二模)如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,若BC=4,tan∠ABD=
1
2
,求BE的长.
(2013·孝感模拟)如图,PB切⊙O于B点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)若BC=6,AD:FD=1:2,求⊙O的半径的长.
第一页
上一页
95
96
97
98
99
下一页
最后一页
1245481
1245488
1245490
1245499
1245504
1245516
1245521
1245525
1245528
1245532