数学
哪个获胜机会多
同学们是否做过这样的游戏:一个同学手中握着4根同颜色、同长短的细绳,只露出它们的头和尾(如图).请另一个同学把4个头分成两组,把每组的两个头相接,4个尾也分成两组,把每组的两个尾分别相接.放开手后,如果4根细绳连成一个圆环,就算接绳子的同学获胜,否则,就算握绳子的同学获胜.如果是你,你会选择充当哪个同学的角色呢?
甲、乙、丙三位同学玩抛掷A、B两枚硬币的游戏,游戏规则是这样:抛出A币正面和B币正面,甲赢;抛出A币反面和B币反面,乙赢;抛出A币正面和B币反面,丙赢.在这个游戏中,谁赢的机会最大( )
(2006·无锡)甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”.最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”.
请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?
(2006·南通)小岳和小亮用甲、乙两个转盘(如图所示)玩游戏.现小岳转动甲盘一次,同时小亮转动乙盘一次.当转盘停止转动时,指针落在某个数字区域中,这个区域中的数字即为转到的数字(不考虑指针落在虚线上).
(1)将所转到的两个数字相加,求这两个数字的和为偶数的概率;
(2)若规定转到的两个数字中数字较大的一方胜出,问这种规定是否公平?并说明理由.
(2006·海淀区)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上.
(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是
1
2
1
2
;
(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之
和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.
(2006·成都)小英和小强做一个“配色”的游戏.下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小英获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小强获胜;在其它情况下,则小英、小强不分胜负.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)此游戏的规则,对双方都公平吗?如果公平,请说明理由;如果不公平,请修改游戏规则,使得游戏对双方都公平.
(2005·西宁)“手心,手背”是同学们中间广为流传的游戏.游戏时,甲、乙、丙三方每次做“手心”“手背”两种手势中的一种.规定:(1)出现三个相同手势不分胜负须继续比赛;
(2)出现一个“手背”和两个“手心”或出现一个“手心”和两个“手背”时,则一种手势者为胜,两种相同手势者为负.
假定甲、乙、丙三人每次都有相同可能地做这两种手势,那么甲、乙、丙三位同学胜的概率是否一样?这个游戏对三方是否公平?若公平,请说明理由;若不公平,如何修改规则才能使游戏对三方都公平?
(2005·乌兰察布)如图是一个木制圆盘,供甲、乙掷飞镖用.图中两同心圆,其中大圆直径为20cm,小圆的直径为10cm,若规定飞镖
掷于小圆内(阴影部分),甲得2分,若飞镖掷于圆白菜环内(白色部分),乙得1分,最后按所得分数定输赢.
(1)你认为此游戏公平吗?通过计算说明理由.
(2)怎样修改得分规则,可以使游戏公平?
(2005·大连)有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢.
(1)这个游戏是否公平?请说明理由;
(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏.
(2013·天桥区二模)小明和小丽用形状大小相同、面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封.游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.
第一页
上一页
39
40
41
42
43
下一页
最后一页
1212996
1212999
1213004
1213007
1213010
1213013
1213014
1213017
1213019
1213021