数学
北京市与石家庄市两地相距300km,甲车在北京市,乙车在石家庄市,两车同时出发,相向而行,在A地相遇.为节约费用(两车相遇并换货后,均需按原路返回出发地).两车换货后,甲车立即按原路返回北京市,而乙车又停留1小时后按原路返回石家庄市.设每车在行驶过程中速度保持不变,两车间的距离y(km)与时间x(h)的函数关系如图所示,根据所
提供的信息,回答下列问题:
(1)①两车从出发开始到A地相遇用了
2
2
h;
②两车在A地换货用了
1
1
h;
③甲车的速度是
70
70
km/h,乙车的速度是
80
80
km/h;
④在图中y轴上的小括号内应填的数字是
220
220
.
(2)从两车开始同时出发到4.6h时,甲车与乙车相距多少千米?
公路上有两辆匀速行驶的汽车,甲汽车在乙汽车前方a千米处,甲汽车在C地,乙汽车在A地,两车同时出发前往距A地900千米的B地,已知乙汽车由A地到B地共
用了15小时.设甲汽车行驶的时间为x小时,行驶中两车的距离为 y千米,y与x的函数关系如图所示:
根据图象进行探究:
信息读取
(1)出发前,甲汽车在乙汽车前方a=
100
100
千米;
(2)解释图中点D的实际意义;
图象理解
(3)分别求出甲汽车和乙汽车的速度;
(4)求E点的坐标.
五一期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元;不少于600元的,所赠优惠劵是购买电器金额的
1
4
,另再送50元现金.
(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x(x≥400)元,优惠券金额为y元,则:①当x=500时,y=
100
100
;②当x≥600时,y=
1
4
x
1
4
x
;
(2)如果小张想一次性购买原价为x(400≤x<600)元的电器,可以使用优惠劵,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式?
(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠券金额累计达800元,设他购买电器的金额为W元,W至少应为多少?(W=支付金额-所送现金金额)
某商店在1-10月份的时间销售A、B两种电子产品,已知产品A每个月的售价y(元)与月份x(1≤x≤10,且x为整数)之间的关系可用如下表格表示:
时间x(月)
1
2
3
4
5
6
7
8
9
10
售价y(元)
720
360
240
180
144
120
120
120
120
120
已知产品A的进价为140元/件,A产品的销量z(件)与月份x的关系式为z=20x;已知B产品的进价为450元/件,产品B的售价m(元)与月份x(1≤x≤10,且x为整数)之间的函数关系式为m=-20x+750,产品B的销量p(件)与月份x的关系可用如下的图象反映.
已知该商店每个月需固定支出500元的物管杂费以及5个员工的工资,已知员工每人每月的工资为1500元.请结合上述信息解答下列问题:
(1)请观察表格与图象,用我们所学习的一次函数或反比例函数,写出y与x的函数关系式,p与x的函数关系式;
(2)试求出第4月和第7月的利润(利润需将每月必要的开支除去);
(3)在4月至6月这三个月期间,已知某一个月(此时月份为整数)的利润(除去当月所有支出部分)恰好为13000元,试求出这是第几月的利润.(40
2
=1600,41
2
=1681,42
2
=1764,43
2
=1849)
近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:
每千克销售(元)
40
39
38
37
…
30
每天销量(千克)
60
65
70
75
…
110
设当单价从40元/千克下调了x元时,销售量为y千克;
(1)写出y与x间的函数关系式;
(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W最大?利润最大是多少?
(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于32元/千克,问一次进货最多只能是多少千克?
(4)若你是该销售部负责人,那么你该怎样进货、销售,才能使销售部利润最大?
某服装经营部每天的固定费用为300元,现试销一种成本为每件80元的服装、规定试销期间销售单价不低于成本单价,且获利不得高于35%,经试销发现,每件销售单价相对成本提高x(元)(x为整数)与日均销售量y(件)之间的关系符合一次函数y=kx+b,且当x=10时,y=100;x=20时,y=80.
(1)求一次函数y=kx+b的关系式;
(2)设该服装经营部日均获得毛利润为W元(毛利润=销售收入-成本-固定费用),求W关于x的函数关系式;并求当销售单价定为多少元时,日均毛利润最大,最大日均毛利润是多少元?
(3)若该批试销服装总共有864件,刚好在规定的a天(a为整数)内全部销售完毕,则a的值是
8、9或12
8、9或12
.(写出一个即可)
某商场经营一批进价2元一件的小商品,在市场销售中发现此商品日销售单价x(元)与日销售量y(件)之间有如下关系:
x
3
5
9
11
y
18
14
6
2
(1)求日销售量y(件)与日销售单价x(元)之间的函数关系式
(2)设经营此商品的日销售利润为P(元),根据日销售规律:
①试求出日销售利润P(元)与日销售单价x之间的关系式,并求出日销售单价x为多少时,才能获得最大日销售利润,日销售利润P是否存在最小值?若存在,试求出,若不存在,请说明理由
②分别写出x和P的取值范围.
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售单价y与上市时间t的关系可以近似地用图①的一条折线表示;西红柿的种植成本单价z与上市时间t的关系可以近似地用图②的一段抛物线表示.
(1)直接写出图①表示的市场销售单价y与时间t的函数关系式;
(2)求出图②中表示的种植成本单价z与上市时间t的函数关系式;
(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的西红柿纯收益单价最大?最大是多少?
(注:市场销售单价和各种植成本单价的单位:元/100kg,时间单位:天)
新鑫公司投资3000万元一生产线生产某种产品,该产品的成本为每件40元,市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80,且x为整数)之间的函数关系如图所示.
(1)直接写出y与x之间的函数关系式;
(2)如何确定售价才能使每年产品销售的利润W(万元)最大?
为了落实中央的惠农政策,积极推进农业机械化,黄冈市某县政府制定了农户投资购买农机设备的补贴办法,其中购买A型、B型农机设备所投资的金额x(万元)与政府补贴的金额y
1
(万元)、y
2
(万元)的函数关系如图所示(图中OA段是抛物线,A是抛物线的顶点).
(1)分别写出y
1
、y
2
与x的函数关系式;
(2)现有一农户计划同时对A型、B型两种农机设备共投资10万元,设其共获得的政府补贴金额为y万元,求y与其购买B型设备投资金额x的函数关系式;
(3)在(2)的条件下,请你帮该农户设计一个能获得最大补贴金额的投资方案,并求出按此方案能获得的最大补贴金额.
第一页
上一页
51
52
53
54
55
下一页
最后一页
1155161
1155163
1155165
1155166
1155168
1155170
1155172
1155174
1155176
1155177