数学
(2007·南宁)如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直
径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.
(2007·泸州)如图,已知AB为⊙O的直径,直线BC与⊙O相切于点B,过A作AD∥OC交⊙O于点D,连接CD.
(1)求证:CD是⊙O的切线;
(2)若AD=2,直径AB=6,求线段BC的长.
(2007·恩施州)如图,形如三角板的△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圆O的直径DE=12cm,矩形DEFG的宽EF=6cm,矩形量角器以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在BC所在的直线上,设运动时间为x(s),矩形量角器和△ABC的重叠部分的面积为S(cm
2
).当x=0(s)时,点E与点C重合.(图(3)、图(4)、图(5)供操作用).
(1)当x=3时,如图(2),S=
36
36
cm
2
,当x=6时,S=
54
54
cm
2
,当x=9时,S=
18
18
cm
2
;
(2)当3<x<6时,求S关于x的函数关系式;
(3)当6<x<9时,求S关于x的函数关系式;
(4)当x为何值时,△ABC的斜边所在的直线与半圆O所在的圆相切?
(2007·北京)已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=
1
2
OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.
(2006·雅安)如图,BC是⊙O的直径,D、E是⊙O上的两点,且弧CD=DE,连接EB、DO.
(1)求证:EB∥DO;
(2)连接EC,在∠CEB的外部作∠BEA=∠C,直线EA交CB的延长线于A,求证:直线EA是⊙O的切线;
(3)若EA=2,AB=1,求⊙O的半径长.
(2006·孝感)几何课本第三册复习题七中有这样一道几何题:以Rt△ABC的直角边AC为直径作圆,
交斜边AB于点D,过点D作圆的切线.求证:这条切线平分另一条直角边BC.(不必证明)
现将上述习题改变成如下问题,请你解答:
如图,以Rt△ABC的直角边AC为直径作⊙O,交斜边AB于点D,E为BC边的中点,连DE.
(1)判断DE是否为⊙O的切线,并证明你的结论.
(2)当AD:DB=9:16时,DE=8cm时,求⊙O的半径R.
(2006·厦门)如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D,∠BAD=∠B=30°
(1)求证:BD是⊙O的切线;
(2)请问:BC与BA有什么数量关系?写出这个关系式,并说明理由.
(2006·厦门)如图,点在⊙O的直径AB交TP于P,若PA=18,PT=12,PB=8.
(1)求证:△PTB∽△PAT;
(2)求证:PT为⊙O的切线;
(3)在
AT
上是否存在一点C,使得BT
2
=8TC?若存在,请证明;若不存在,请说明理由.
(2006·泰安)已知:如图,以△ABC的边AB为直径的⊙O交边AC于点D,且过点D的切线DE平分边BC.
(1)BC与⊙O是否相切?请说明理由;
(2)当△ABC满足什么条件时,以点O,B,E,D为顶点的四边形是平行四边形?并说明理由.
(2006·绵阳)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O(不写作法,保留作图痕迹);
(2)求证:BC为⊙O的切线;
(3)若AC=3,tanB=
3
4
,求⊙O的半径长.
第一页
上一页
12
13
14
15
16
下一页
最后一页
1076786
1076790
1076793
1076794
1076796
1076799
1076801
1076804
1076807
1076809