数学
心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如右图所示(其中AB、BC分别为线段,CD为双曲线的一
部分):
(1)根据图象填空:
AB的解析式为
y=2x+20
y=2x+20
(0≤x≤10);
BC的解析式为
y=40
y=40
(10≤x≤25);
CD的解析式为
y=
1000
x
y=
1000
x
(x≥25);
(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?
(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达
到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
有一批救灾物资要从A市运往400km受灾严重的B地,如果平均车速为v(km/h),从A市到B地所需时间为t(h).
(1)求v与t的函数关系式;
(2)如果救灾物资必须在8h内运到B地,求车速不能低于多少?
如图1,张老师设计了一个杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:
x(cm)
10
15
20
25
30
y(g)
30
20
15
12
10
(1)把上表中(x,y)的各组对应值作为点的坐标,描在如图2所示的坐标系中,并用平滑的曲线将这些点连接起来;
(2)观察所画的图象,猜测y与x之间的函数关系;
(3)当砝码的质量为50g时,活动托盘B与点O的距离是多少?
(4)当活动托盘B往右移动时,应往活动托盘B中添加还是减少砝码?
一水池内有水90立方米,设全池水排尽的时间为y分钟,每分钟的排水量为x立方米,
排水时间的范围是9≤y≤15
(1)求y关于x的函数解析式,并指出每分钟排水量x的取值范围;
(2)在坐标系中画出此函数的图象;
(3)根据图象求当每分钟排水量为9立方米时,排水需多少分钟?当排水时间为10分钟时,每分钟的排水量是多少立方米?
(2013·当涂县模拟)已知圆锥的侧面积为16πcm
2
.
(1)求圆锥的母线长L(cm)关于底面半径r(cm)之间的函数关系式;
(2)写出自变量r的取值范围;
(3)当圆锥的侧面展开图是圆心角为90°的扇形时,求圆锥的高.
(2011·龙文区质检)近视眼镜的度数与镜片焦距成反比.小明到眼镜店调查了一些数据如下表:
眼镜度数y(度)
400
625
800
镜片焦距x(cm)
25
16
12.5
(1)求眼镜度数y(度)与镜片焦距x(cm)之间的函数关系式;
(2)若小明所戴眼镜度数为500度,求该镜片的焦距.
水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
第1天
第2天
第3天
第4天
第5天
第6天
第7天
第8天
售价x(元/千克)
400
250
240
200
150
125
120
销售量y(千克)
30
40
48
60
80
96
100
已知三角形的面积为30cm
2
,一边长为acm,这边上的高为hcm.
(1)写出a与h的函数关系式.
(2)在坐标系中画出此函数的简图.
(3)若h=10cm,求a的长度?
某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增电量y(亿度)与(x-0.4)成反比例,又当x=0.65元时,y=0.8.求:
(1)y与x之间的函数关系式;
(2)若电价调至0.6元时,本年度的用电量是多少?
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两知直线,给出它们平行的定义:
设一次函数y=k
1
x+b(k
1
≠0)的图象为直线l
1
,一次函数y=k
2
x+b(k
2
≠0)的图象为直线l
2
,若k
1
=k
2
,且b
1
≠b
2
,我们就称直线l
1
与直线l
2
互相平行.如图,将直线y=4x沿y轴向下平移后,得到的直线与x轴交于点A(
9
4
,0
),与
双曲线
y=
k
x
(x>0)交于点B.
(1)求直线AB的解析式;
(2)若点B的纵坐标为m,求双曲线解析式(用含m的代数式表示).
第一页
上一页
26
27
28
29
30
下一页
最后一页
1068515
1068517
1068518
1068521
1068523
1068525
1068527
1068529
1068532
1068536