数学
如图,已知一次函数
y=-
3
4
x+3
的图象与x轴,y轴分别相交于A,B两点,点C在AB上以
每秒1个单位的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间用t(单位:秒)表示.
(1)求AB的长;
(2)当t为何值时,△ACD与△ABO相似?并直接写出此时点C的坐标.
如图1,矩形OABC中,以OA所在直线为x轴,OC所在直线为y轴,建立直角坐标系,点B的坐标为(4,2).
(1)A点坐标为
(4,0)
(4,0)
,C点坐标为
(0,2)
(0,2)
;
(2)求直线AC的函数关系式;
(3)如图2,将直线AC沿y轴正方向平移一个单位长度,交BC于D,交AB于E,分别连接OD、OE,求△ODE的面积.
如图,直线y=-
3
3
x+1
和x轴、y轴分别交于点A、点B,以线段AB为边在第一象限作等边三角形ABC,且在第一象限内有点P(m,
1
2
),使△ABP的面积与△ABC的面积相等,求m的值.
已知四边形OABC是边长为4的正方形,分别以OA、OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过A、C两点.
(1)求直线l的函数表达式;
(2)若P是直线l上的一个动点,请直接写出当△OPA是等腰三角形时点P的坐标;
(3)如图2,若点D是OC的中点,E是直线l上的
一个动点,求使OE+DE取得最小值时点E的坐标.
已知直线y=-2x-4与x轴、y轴分别交于A、B两点,点C在x轴负半轴上,AC=2.
(1)点P在直线y=-2x-4上,△PAC是以AC为底的等腰三角形,
①求点P的坐标和直线CP的解析式;
②请利用以上的一次函数解析式,求不等式-x-2>x+4的解集.
(2)若点M(x,y)是射线AB上的一个动点,在点M的运动过程中,试写出△BCM的面积S与x的函数关系式,并画出函数图象.
已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以所在的直线为x轴,y轴,建立如图所示的平面直角坐标系,直线l经过C、E两点.
(1)求直线l的函数表达式;
(2)如图,将矩形OABC中,将△COE沿直线l折叠后得到△CFE,点F在矩形OABC内部,延长CF交AB于G点.证明:GF=GA;
(3)由上面的条件,求四边形AGFE的面积?
已知:如图1,平面直角坐标系xOy中,四边形OABC是矩形,点A,C的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线y=-
1
2
x
+b交折线O-A-B于点E.
(1)在点D运动的过程中,若△ODE的面积为S,求S与b的函数关系式,并写出自变量的取值范围;
(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA点N,E.求证:四边形DMEN是菱形;
(3)问题(2)中的四边形DMEN中,ME的长为
2.5
2.5
.
(2006·吉林)鲁老师乘车从学校到省城去参加会议,学校距省城200千米,车行驶的平均速度为80千米/时.x小时后鲁老师距省城y千米,则y与x之间的函数关系式为( )
(2013·香坊区一模)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为( )
(2012·道外区二模)从A地向B地打长途电话,通话3分以内收费2.4元,3分后每增加通话时间1分加收1元,若通话时间为x(单位:分,x≥3且x为整数),则通话费用y(单位:元)与通话时间x(分)函数关系式是( )
第一页
上一页
39
40
41
42
43
下一页
最后一页
1023785
1023788
1023790
1023793
1023795
1023797
1023799
1026205
1026208
1026210