数学
(2005·遵义)在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.设坐标轴的单位长度为1厘米,整点P从原点O出发,速度为1厘米/秒,且整点P作向上或向右运动(如图所示).运动时间(秒)与整点(个)的关系如下表:
整点P从原点O出发的时间(秒)
可以得到的整点P的坐标
可以得到整点P的个数
1
(0,1),(1,0)
2
2
(0,2),(1,1),(2,0)
3
3
(0,3),(1,2),(2,1),(3,0)
4
…
…
…
根据上表中的规律,回答下列问题:
(1)当整点P从点O出发4秒时,可以得到的整点P的个数为
5
5
个;
(2)当整点P从点O出发8秒时,在直角坐标系中描出可以得到的所有整点,并顺次连接这些整点;
(3)当整点P从点O出发
20
20
秒时,可到达整点(16,4)的位置;
(4)当整点P(x,y)从点O出发30秒时,整点P(x,y)恰好在直线y=2x-6上,求整点P(x,y)的坐标.
(2005·玉林)如图,A、B两点的坐标分别是(x
1
,0)、(x
2
,0),其中x
1
、x
2
是关于x的
方程x
2
+2x+m-3=0的两根,且x
1
<0<x
2
.
(1)求m的取值范围;
(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;
(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.
(2005·盐城)已知:如图所示,直线l的解析式为y=
3
4
x-3,并且与x轴、y轴分别相交于点A、B.
(1)求A、B两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/每秒的速度向x轴正方向运动,问什么时刻该圆与直线l相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0
.5个单位/秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上一共运动了多长时间?
(2005·太原)如图,直线y=
3
3
x+2与y轴交于点A,与x轴交于点B,⊙C是△ABO的外接圆(O为坐标原
点),∠BAO的平分线交⊙C于点D,连接BD、OD.
(1)求证:BD=AO;
(2)在坐标轴上求点E,使得△ODE与△OAB相似;
(3)设点A′在OAB上由O向B移动,但不与点O、B重合,记△OA′B的内心为I,点I随点A′的移动所经过的路程为l,求l的取值范围.
(2005·宁德)如图,直线y=kx+8分别与x轴、y轴相交于A、B两点,O为坐标原点,A点的坐标为(4,0).
(1)求k的值;
(2)若P为y轴(B点除外)上的一点,过P作PC⊥y轴交直线AB于C.设线段PC的长为l,点P的坐标为(0,m).
①如果点P在线段BO(B点除外)上移动,求l与m的函数关系式,并写出自变量m的取值范围;
②如果点P在射线BO(B、O两点除外)上移动,连接PA,则△APC的面积S也随之发生变化.请你在面积S的整个变化过程中,求当m为何值时,S=4.
(2005·济宁)如图,点P是x轴上的一点,以P为圆心的圆交x轴于点A(6,0),且与y轴相切于点O,点C(8,0)为x轴上的一点,过点C作⊙P的切线,切点为B.求过B、C两点的直线的解析式.
(2005·贵阳)直线PA是一次函数y=x+n(n>0)的图象,直线PB是一次函数y=-2x+m(m>n)的图象,PA与y轴
交于Q点(如图所示),若四边形PQOB的面积是
5
6
,AB=2.
(1)用m或n表示A、B、Q、三点的坐标;
(2)求A、B两点的坐标;
(3)求直线PA与PB的解析式.
(2005·丰台区)在直角坐标系中,⊙O
1
经过坐标原点O,分别与x轴正半轴、y轴正半轴交于点A、B.
(1)如图,过点A作⊙O
1
的切线与y轴交于点C,点O到直线AB的距离为
12
5
,sin∠ABC=
3
5
,求直线AC的解析式;
(2)若⊙O
1
经过点M(2,2),设△BOA的内切圆的直径为d,试判断d+AB的值是否会发生变化?如果不变,求出其值;如果变化,求其变化的范围.
(2005·大连)如图,P是y轴上一动点,是否存在平行于y轴的直线x=t,使它与直线y=x和直线y=-
1
2
x+2分别交于点D、E(E在D的上方),且△PDE为等腰直角三角形?若存在,求t的值及点P的坐标;若不存在,请说明原因.
(2004·沈阳)如图,直线l:y=
3
3
x+
3
3
与x轴、y轴分别交于点B、C,以点A(1,0)为圆心,以AB的长为半径作⊙A,分别交x轴、y轴正半轴于点D、E,直线l与⊙A交于点F,分别过点B、F作⊙A的切线交于点M.
(1)直接写出点B、C的坐标;
(2)求直线MF的解析式;
(3)若点P是
BEF
上任意一点(不与B、F重合).连接BP、FP.过点M作MN∥PF,交直线l于点N.设PB=a,MN=b,求b与a的函数关系式,并写出自变量a的取值范围;
(4)若将(3)中的条件点P是
BEF
上任意一点,改为点P是⊙A上任意一点,其它条件不变.当点P在⊙A上的什么位置时,△BMN为直角三角形,并写出此时点N的坐标.(第(4)问直接写出结果,不要求证明或计算过程)
第一页
上一页
19
20
21
22
23
下一页
最后一页
1023344
1023346
1023349
1023351
1023353
1023355
1023357
1023359
1023361
1023363