数学
组装甲乙丙三种产品,需用A、B、C三种零件,每件甲产品需用A、B各2个;每件乙产品需用B、C各1个;每件丙产品需用2个A和1个C.用库存的A、B、C三种零件,如组装成p件甲产品,q件乙产品和r件丙产品,则剩下2个A和1个B,而C恰好用完.
(2005·江苏模拟)光明中学的6名教师带领8名市三好学生到苏州园林参观学习,发现门票有这样几种优惠方案.(1)学生可凭学生证享受6折优惠;(2)20人以上的团体队可享受8折优惠;(3)通过协商可以享受9折优惠.请同学们根据上述优惠途径,设计出五种不同的优惠方案,并说明最佳方法.
有12名游客要赶往离住地40千米的一个火车站去乘火车,离开车时间只有3小时了,他们步行的速度为每小时6千米,靠走路是来不及了,唯一可以利用的交通工具只有一辆小汽车,但这辆小汽车连司机在内最多能乘5人,汽车的速度为每小时60千米.
(1)甲游客说:我们肯定赶不上火车;(2)乙游客说:只要我们肯吃苦,一定能赶上火车;(3)丙游客说:赶上或赶不上火车,关键取决于我们自己.
亲爱的同学,当你身处其境,一定也有自己的想法,请你就某位游客的说法,用数学知识以理其人,由于难度不同,请你慎重选择.
选择(1)答对只能给3分,选择(2)答对可以给4分,选择(3)答对我们奖赏你满分6分.
追求真理是人类永恒的目标. 数学不仅要回答“什么是数学真理”,还必须回答“为什么”它是数学真理. 为了证明数学真理,就需要证明,证明就是用人人皆同意的一些“公理”与规定名词的意义,把我们以前仅凭直观或实验探索发现过的结论成为公理的逻辑推论,这样就有很强的说服力. 请你在以下2个命题中任选一个加以逻辑证明,并在你选证的命题前面括号内打“∨”.
(∨)命题1:一组对边平行且相等的四边形是平行四边形;
( )命题2:梯形的中位线平行于两底且等于两底和的一半.
推理能力都很强的甲、乙、丙站成一列,丙可以看见甲、乙,乙可以看见甲但看不见丙,甲看不见乙、丙.现有5顶帽子,3顶白色,2顶黑色.老师分别给每人戴上一顶帽子(在各自不知道的情况下).老师先问丙是否知道头上的帽子颜色,丙回答说不知道;老师再问乙是否知道头上的帽子颜色,乙也回答说不知道;老师最后问甲是否知道头上的帽子颜色,甲回答说知道.请你说出甲戴了什么颜色的帽子,并写出推理过程.
10位小运动员,他们着装的运动服号码分别是1-10,能否将这10位运动员按某种顺序站成一排,使得每相邻3名运动员号码数之和都不大于15?
你觉得手机很神奇吗?它能在瞬间清晰地传递声音、文字、图象等信息,据说以后还能发送味道、触觉信息呢!这里都有手机中电脑芯片的功劳.其实,这些信号在电脑芯片中都是以二进制数的形式给出的.每个二进制数都由0和1构成,电脑芯片上电子元件的“开”、“关”分别代表“1”和“0”.一组电子元件的“开”“关”状态就表示相应的二进制数.例如“开”“开”“关”表示“110”.
如图,电脑芯片的某段电路上分布着一组电子元件(假设它们首尾不相连),且相邻的两个元件不能同时是关的.(以下各小题要求写出解答过程)
(1)若此电路上有4个元件,则这4个元件所有不同的“开”“关”状态共有多少种?(请一一列出);
(2)若用a
k
表示电路上k(k≥1)只电子元件所有不同的“开”“关”状态数,试探索a
k
,a
k+1
,a
k+2
之间的关系(不要求论证);
(3)试用(2)中探索出的递推关系式,计算a
10
的值.
请你参与亮亮在翻转扑克牌游戏时的思考.
(1)亮亮同学把3张正面都朝上的扑克牌每次都翻转2张,改变它们的朝向.他发现无论经过多少次这样的操作都不能使3张扑克牌的正面全部朝下.他的结论对吗?
(2)把4张正面都朝上的扑克牌每次都翻转2张,改变它们朝向,经过若干次操作,能否使4张扑克牌的正面都朝下呢?
(3)把4张正面都朝上的扑克牌每次都翻转3张,改变它们朝向,经过若干次操作,能否使4张扑克牌的正面都朝下呢?若能,至少要经过几次这样的操作?若不能,请说明理由.
图1是一个3×3方阵图,每行的三个数、每列的三个数,每斜对角的三个数相加的和均相等.
如何把9个连续整数迅速填入一个3×3方阵,使每行、每列、每斜对角的三个数相加的和均相等,是我们祖先早就在研究的问题.古代的“洛书”、汉朝徐岳的“九宫算”就揭示出祖先们得到的神奇填写方法.图1显示出把-4,-3,-2,-1,0,1,2,3,4填入一个3×3方阵,使每行、每列、每斜对角的三个数相加的和均相等的一种方法.同学们,你能正确填写吗?马上试一试:
(1)请观察图1中数字的填写规律,然后将下列各数组中的9个数分别填入图2、图3、图4所示的9个空格中,使得每行的三个数、每列的三个数,每斜对角的三个数相加的和均相等;
①6,5,4,3,2,1,0,-1,-2
②9,8,7,6,5,4,3,2,1
③-8,-6,-4,-2,0,2,4,6,8
(2)拓展探究:在图5所示 9个空格中,填入5个2和4个-2,使得每行、每列、每斜对角的三个数的乘积都是8;
(3)拓展再探究:将25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1这25个数分别填入图 6所示25个空格中,使得每行、每列、每斜对角的五个数相加的和均相等.
小明等3位同学在本章复习中,再次研究了有趣的推理问题.通过研究,他们发现,在日常生活中有很多的推理现象发现,推理并不是几何的“专利”.
下面的问题曾使他们伤透脑筋,但最终还是圆满解决了.
问题:把下面的图形分成大小,形状完全相同的两块,使每块中都含2005这4个数字.请你试一试.
第一页
上一页
84
85
86
87
88
下一页
最后一页
1022238
1022239
1022240
1022241
1022242
1022243
1022244
1022245
1022246
1022248