数学
(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.
问题1:以直角三角形的三边为边向形外作等边三角形,探究S
1
+S
2
与S
3
的关系(如图1).
问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).
问题3:以直角三角形的三边为直径向形外作半圆,探究S
1
+S
2
与S
3
的关系(如图3).
4个全等的直角三角形的直角边分别为a、b,斜边为c.现把它们适当拼合,可以得到如图的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.
如图所示的直角三角形ABC中,直角边为a、b,斜边长为c,则a
2
+b
2
=c
2
.现请你把此三角形当样板(即可利用它的三条边和三个角),分别画出边长为a、b、c的三个正方形,并把边长为a和b的两个正方形分别至多剪2刀,把它们拼成边长为c的正方形,以验证勾股定理的正确性(用画图表示剪拼).
咖菲尔德(Garfeild,1881年任美国第二十届总统)利用下图证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现在请你尝试他的证明过程.
现有4个全等的直角三角形纸板,你能用它们来拼证勾股定理吗?若能,说明你的思路和方法,方法越多越好(至少要写出四种方法).
用下面的图形验证勾股定理(虚线代表辅助线):
赵君卿图.
参照如图,写出勾股定理的逻辑证明.
(2010·南宁)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是( )
勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=2,AC=3,则D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为( )
在直角三角形中,有两边分别为3和4,则第三边是( )
第一页
上一页
139
140
141
142
143
下一页
最后一页
1064171
1064174
1064176
1064179
1064181
1064183
1064184
1064186
1064189
1395969