数学
(2009·高淳县二模)如图:在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P以一定的速度沿AC边由A向C运动,点Q以1cm/s速度沿CB边由C向B运动,设P、Q同时运动,且当一点运动到终点时,另一点也随之停止运动,设运动时间为t(s).
(1)若点P以
3
4
cm/s的速度运动,
①当PQ∥AB时,求t的值;
②在①的条件下,试判断以PQ为直径的圆与直线AB的位置关系,并说明理由.
(2)若点P以1cm/s的速度运动,在整个运动过程中,以PQ为直径的圆能否与直线AB相切?若能,请求出运动时间t;若不能,请说明理由.
已知如图,△ABC中,∠C=90°,AC=3,BC=3
3
,以BC边上点O为圆心,以OB为半径的圆分别
交边AB、BC于点M、N.连接MN.
(1)请你探究:四条线段AB、BM、BC、BN之间的关系,并证明你的结论;
(2)若M是AB边的中点,请你判断CM与⊙O的位置关系,并说明理由;
(3)设⊙O的半径为r,若改变点O在BC上的位置,试探究当半径r满足什么条件时,⊙O与边AC只有一个公共点.(直接写出答案)
已知等腰三角形△ABC中,AB=AC,∠C的平分线与AB边交于点P,M为△ABC的内切圆⊙I与BC边的切点,作MD∥AC,交⊙I于点D.
证明:PD是⊙I的切线.
(2013·泰兴市模拟)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,
cos∠BED=
4
5
,求AD的长.
(2013·湖州一模)如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.
(1)判断直线CD是否为⊙O的切线,请说明理由;
(2)若CD=3,求BC的长.
(2012·太原一模)如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.
(2012·太原二模)已知:如图,在△ABC中,D是AB边上一点,⊙O过D、B、C三点,∠DOC=2∠ACD=90°.
(1)求证:直线AC是⊙O的切线;
(2)如果∠ACB=75°,⊙O的半径为4,求BD的长.
(2012·姜堰市二模)如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延
长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
(2)若AD=4,
cos∠ABF=
4
5
,求BC的长.
如图,已知△ABC,以AB为直径的⊙O经过BC的中点D,DE⊥AC于E.
(1)求证:DE是⊙O的切线;
(2)若
cosC=
1
2
,DE=6,求⊙O的直径.
如图,在△ABC中,AB=AC,O在AB上,以O为圆心,OB为半径的圆与AC相切于点F,交BC
于点D,交AB于点G,过D作DE⊥AC,垂足为E.
(1)DE与⊙O有什么位置关系,请写出你的结论并证明;
(2)若⊙O的半径长为3,AF=4,求CE的长.
第一页
上一页
169
170
171
172
173
下一页
最后一页
920462
920463
920464
920465
920466
920467
920468
920469
920470
920471