数学
(2012·朝阳一模)已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.
(1)求证:DE为⊙O的切线;
(2)若DE=2,tanC=
1
2
,求⊙O的直径.
(2012·本溪二模)如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过点D作DF⊥BC于点F,交AB的延长线于点E.
(1)求证:直线DE是⊙O的切线;
(2)当cosE=
4
5
,BF=6时,求⊙O的直径.
(2011·兴国县模拟)已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与A
C,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD=BD=2,求⊙O的面积.
(2011·三山区模拟)如图,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求AB的长;
(2)延长DB到F,使BF=BO,连接FA,请判断直线FA与⊙O的位置关系?并说明理由.
(2011·南开区一模)如图,点C是直径为AB的半圆O上一点,D为
BC
中点,过D作AC的垂线,垂足为E.求证:DE是半圆的切线.
如图,以△ABC的直角边AB为直径的半圆O与斜边AC交于点D,E是BC边的中点,连接DE.
(1)求证:DE是半圆O的切线;
(2)若AD、AB的长是方程x
2
-10x+24=0的个根,求直角边BC的长.
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若DE的长为2
2
,cosB=
1
3
,求⊙O的半径.
如图,CD是⊙O的直径,弦AB⊥CD于E,F是延长线上的一点,连接BF,若
AB=2
3
,EO=1.
(1)求⊙O的半径.
(2)若∠F=30°,求证:直线BF是⊙O的切线.
如图(1),∠ABC=90°,O为射线BC上一点,OB=4,以点O为圆心,
1
2
BO长为半径作⊙O交BC于点D、E.
(1)当射线BA绕点B按顺时针方向旋转多少度时与⊙O相切?请说明理由;
(2)若射线BA绕点B按顺时针方向旋转与⊙O相交于M、N两点(如图(2)),MN=
2
2
,求
MN
的长.
已知:Rt△ABC中,AC⊥BC,CD为AB边上的中线,AC=6cm,BC=8cm;点O是线段CD边上的动点(不与点C、D重合);以点O为圆心、OC为半径的⊙O交AC于点E,EF⊥AB于F.
(1)求证:EF是⊙O的切线.(如图1)
(2)请分析⊙O与直线AB可能出现的不同位置关系,分别指出线段EF的取值范围.(图2供思考用)
第一页
上一页
160
161
162
163
164
下一页
最后一页
920372
920373
920374
920375
920376
920377
920378
920379
920380
920381