数学
一个袋中装有两个红球三个白球,第一次摸出一个球放回,再任意摸出一个,求两次都摸到红球的概率.
两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中摸出一个球,请用列表法表示出可能出现的情况,并求出摸出的球颜色相同的概率.
在一次数学调考中,小明有一道选择题(四选一)不会做,随机选了一个答案,小亮有两道选择题不会做,他也猜了两个答案,他估算了一下,只要猜对一道题,这次测试就可上100分(满分120分);小宁有三道选择题不会做,临交卷时随机填了三个答案;
(1)小明随机选的这个答案,答错的概率是
0.75
0.75
;
(2)小亮这次测试不能上100分的概率是
9
16
9
16
,要求画出树形图;
(3)小宁三道选择题全错的概率是
27
64
27
64
;
(4)这个班数学老师参加集体阅卷,在改卷的过程中,发现一个学生12道选择题一题也没选对,请你根据(1)(2)(3)发现的规律,推出12道选择题全错的概率是
(
3
4
)
12
(
3
4
)
12
(用幂表示).
甲口袋中装有1个红球和1个白球,乙口袋中装有1个红球和2个白球,这些球除颜色外都相同,从这2个口袋中各任意摸出1个球,摸出的2个球颜色不同的概率是多少?(用树状图说明)
在一个不透明的袋子中装有三个完全相同的小球,分别标有数字2,3,4.从袋子中随机取出一个小球,用小球上的数字作为十位数字,然后放回,再取出一个小球,用小球上的数字作为个位数字,这样组成一个两位数,请用列表法或画树状图的方法完成下列问题.
(1)按这种方法能组成哪些两位数?
(2)组成的两位数能被3整除的概率是多少?
数学游戏:有谷粒100颗,甲、乙二人玩轮流抓谷粒颗数的游戏,规定每人每次至少抓1颗,至多抓5颗,谁抓到最后一把谁赢.若甲先抓,抓几颗,才能保证一定赢?
建立模型:为了解决这个问题,可以把问题一般化:找到当谷粒为n颗时,甲如何抓能赢的规律?
探索规律:为了找到解决问题的方法,我们可以把上述一般化的问题特殊化:
(1)填表
n
1
2
3
4
5
6
…
甲
1
2
…
乙
--
--
…
输赢结果
甲赢
甲赢
…
注:在甲、乙所在行空白处填他们所抓谷粒颗数,输赢结果行空白的注明甲输或甲赢.猜想并验证规律:
(2)根据上述的规律,当谷粒为7颗,甲能赢吗?如果能,试简述甲、乙轮流抓的过程?如果不能请说明理由;若谷粒为13颗呢?
解决问题:
(3)当谷粒为100颗时,甲先抓几颗,才能保证一定赢?为什么?
(2007·绵阳)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为
7
27
7
27
.
(2006·潍坊)(A题)小明与小亮玩掷骰子游戏,有两个均匀的正方体骰子,六个面上分别写有1,2,3,4,5,6这六个数.如果掷出的两个骰子的两个数的和为奇数则小明赢,如果掷出的两个骰子的两个数的和为偶数则小亮赢,则小明赢的概率是
1
2
1
2
.
(2005·西宁)一个袋中装有两个红球,一个白球.第一次摸出一个球,放回搅匀,再任意摸出一个,则两次都摸到白球的概率为
1
9
1
9
.
(2005·威海)“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路.每一条公路的长度如下图所示(单位:km).梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是
1
6
1
6
.
第一页
上一页
130
131
132
133
134
下一页
最后一页
922018
922019
922020
922021
922022
922023
922024
922025
922026
922027