数学
某超市经销一种销售成本为每件60元的商品,据市场调查发现,如果按每件70元销售,一周能售出500件,若销售单价每涨1元,每周销售就减少10件,设销售价为每件x元(x≥70),一周的销售量为y件.
(1)写出y与x的函数关系式,并写出x的取值范围.
(2)设一周的销售利润为w,写出w与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?
(3)在超市对该种商品投入不超过18000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?
如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA距离为1m处达到距水面最大高度2.25m.
(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?
(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?
某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售
时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).
(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;
(2)求截止到几月末公司累积利润可达到30万元?
(3)求第8个月公司所获利润是多少万元?
“人间四月天,花城看杜鹃”,为了迎接八方宾朋的到来,黄冈某地市政府把市区主要路段路灯更换为太阳能路灯;已知太阳能路灯售价为5000元/个,目前两个商家有此产品;甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个;乙店一律按原价的80%销售;现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y
1
元;如果全部在乙商家购买,则所需金额为y
2
元;
(1)求y
1
与x之间的函数关系式;
(2)写y
2
与x之间的函数关系式;
(3)若市政府投资140万元,最多能购买多少个太阳能路灯?
某公司研制出一种新型科技产品,每件产品的成本为2400元.在该产品的试销期间,为促销,公司决定:商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元;且商家一次性购买该产品不能超过60件.
(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?
(2)设商家一次购买这种产品x件,开发公司所获的利润为y元.在公司规定范围内,商家购买多少件时,公司可获得最大利润?最大利润是多少?
(3)某商家一次购买这种产品a件,以每件3200元的价格全部售出,共获利24750元(不计其它成本),请求出产品件数a的值.
潍坊市昌乐县有一个食品厂,该厂的食品主要有两种销售方式,一种方式是卖给食品经销商,另一种方式是在各超市的柜台进行销售,每年该厂生产的食品都可以全部销售,该食品厂每年可以生产食品100万盒,其中,卖给食品经销商每盒食品的利润y
1
(元)与销售量x(万盒)之间的函数图如图所示;在各超市柜台销售的每盒利润y
2
(元)与销售量x(万盒)之间的函数关系为:
y
2
=
-
3
4
x+80(0≤x<40)
40(40≤x≤100)
(1)写出该食品厂卖给食品经销商的销售总利润z
1
(万元)与其销售量x(万盒)之间的函数关系式,并指出x的取值范围;
(2)求出该食品厂在各超市柜台销售的总利润z
2
(万元)与卖给食品经销商的销售量x(万盒)之间的函数关系式,并指出x的取值范围;
(3)求该食品厂每年的总利润w(万元)与卖给食品经销商的销售量x(万盒)之间的函数关系式,并帮助该食品厂确定卖给食品经销商和在各超市柜台的销量各为多少万盒时,该公司的年利润最大?
某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.
(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?
大学生李某投资在沙坪坝学校密集的沙南街路段投资开办了一个学生文具店.该店在开学前8月31日采购进一种今年新上市的文具袋.9月份(9月1日至9月30日)进行30天的试销售,购进价格为20元/个.销售结束后,得知日销售量y(个)与销售时间x(天)之间有如下关系:y=-2x+80(1≤x≤30,且x为整数);又知销售价格z(元/个)与销售时间x(天)之间的函数关系满足如图所示的函数图象.
(1)求z关于x的函数关系式;
(2)求出在这30天(9月1日至9月30日)的试销中,日销售利润ω(元)与销售时间x(天)之间的函数关系式;
(3)“十一”黄金周期间,李某采用降低售价从而提高日销售量的销售策略.10月1日全天,销售价格比9月30日的销售价格降低a%而日销售量就比9月30日提高了6a%(其中a为小于15 的正整数),日销售利润比9月份最大日销售利润少569元,求a的值.(参考数据:50
2
=2500,51
2
=2601,52
2
=2704)
有一座抛物线型拱桥,正常水位时,桥下水面宽度为20m,拱顶距水面4m.
(1)如图所示的直角坐标系中,求出该抛物线的关系式.
(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d表示为h的函数关系式.
(3)设正常水位时,桥下的水深为2m,为保证过往船只的顺利通过,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?
如图,用长20m的篱笆,一面靠墙围成一个长方形的园子,怎么围才能使园子的面积最大?最大面积是多少?
第一页
上一页
69
70
71
72
73
下一页
最后一页
905712
905713
905714
905715
905716
905717
905718
905719
905720
905721