数学
某产品每件的成本价是20元,试销阶段,每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如右表:并且日销售量y是每件产品销售价x的一次函数.
x/元
25
30
35
y/件
15
10
5
(1)求y与x的函数关系式;
(2)为获最大销售利润,每件产品的销售价应定为多少元?此时每日的销售利润是多少?
密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.
某药品每盒成本价为20元,根据有关规定,试销期间售价不低于成本价,又不高于每盒30元.某药店在试销过程中发现,每天的销售量y(盒)与销售单价x(元)的关系可以近似的看作如图的一次函数.
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)设该药店每天获得的利润为w(元),求w与x的函数关系式;
(3)当销售价定为多少元时,可以使这种药每天的获利达到125元?
如图,小勇要用长20m的铁栏杆,一面靠墙AD,围成一个矩形的花圃(墙足够长).求AB的长为多少时,花圃的面积最大?并求出这个最大面积.
心理学家发现,学生对概念的接受能力y与提出的概念所用的时间x(单位:分)之间满足函数关系y=-0.1x
2
+2.6x+43(0≤x≤30),y值越大,表示接受能力越强.
(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?
(2)第几分时,学生的接受能力最强?
有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,建立如图所示的平面直角坐标系.
(1)求这条抛物线所对应的函数关系式;
(2)在对称轴右边1m处,桥洞离水面的高是多少?
某学校广场有一段15米长的旧围栏AB,如图所示,现打算利用围栏的一部分(或全部)为一边,修建一排大小相等的三个矩形草坪.现有新围栏24米,每米10元,
修建旧围栏每米价格1.5元,如何设计每个小矩形的长、宽,使三个矩形草坪的总面积最大,最大的面积是多少?要花多少钱?
将一根长为16π厘米的细铁丝剪成两段,并把每段铁丝围成圆,设所得两圆半径分别为r和R,面积分别为S
1
和S
2
.
(1)求R与r的数量关系式,并写出r的取值范围;
(2)记S=S
1
+S
2
,求S关于r的函数关系式,并求出S的最小值.
某服装经营部每天的固定费用为300元,现试销一种成本为每件80元的服装.规定试销期间销售单价不低于成本单价,且获利不得高于35%.经试销发现,每件销售单价相对成本提高x(元)(x为整数)与日均销售量y(件)之间的关系符合一次函数y=kx+b,且当x=10时,y=100;x=20时,y=80.
(1)求一次函数y=kx+b的关系式;
(2)设该服装经营部日均获得毛利润为W元(毛利润=销售收入-成本-固定费用),求W关于x的函数关系式;并求当销售单价定为多少元时,日均毛利润最大,最大日均毛利润是多少元?
“
家友超市”购进一批成本价20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系式.
(1)试求出y与x的函数关系式;
(2)设“家友超市”销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)根据市场调查,该绿色食品每天可获利润不超过4420元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围.
第一页
上一页
65
66
67
68
69
下一页
最后一页
905672
905673
905674
905675
905676
905677
905678
905679
905680
905681