数学
重庆旺旺苗圃去年销售的某种树苗每棵的售价y(元)与月份x之间满足一次函数关系y=-x+62而去年的月销售量P(棵)与月份x之间成一次函数关系,其中两个月的销售情况如下表:
月份x
1月
5月
销售量P(棵)
4100
4500
(1)求该种树苗在去年哪个月销售金额最大?最大是多少?
(2)由于受干旱影响,今年1月份该种树苗的销售量比去年12月份下降了25%.若将今年1月份售出的树苗全部进行移栽,则移栽当年的存活率为(1-n%),且平均每棵树苗每年可吸碳1.6千克,随着该树苗对环境的适应及生长,第二年全部存活,且每棵树苗的吸碳能力增加0.5n%.这样,这批树苗第二年的吸碳总量为5980千克,求n的值. (保留一位小数)(参考数据:
2
≈1.414,
3
≈1.732,
5
≈2.236,
6
≈2.449)
已知二次函数y=x
2
-2x-3
(1)指出它的对称轴、顶点坐标.
(2)x取何值时,y有最小值,最小值是多少?
(2011·资阳)如图,已知反比例函数y=
m
x
(x>0)的图象与一次函数y=-x+b的图象分别交于A(1,3)、B两点.
(1)求m、b的值;
(2)若点M是反比例函数图象上的一动点,直线MC⊥x轴于C,交直线AB于点N,MD⊥y轴于D,NE⊥y轴于E,设四边形MDOC、NEOC的面积分别为S
1
、S
2
,S=S
2
-S
1
,求S的最大值.
(2011·宁德)直线y=x-6与x轴、y轴分别交于点A、B,点E从B点,出发以每秒1个单位的速度沿线段BO向O点移动(与B、O点不重合),过E作EF∥AB,交x轴于F.将四边形ABEF沿EF折叠,得到四边形DCEF,设点E的运动时间为t秒.
(1)①直线y=x-6与坐标轴交点坐标是A(
6
6
,
0
0
),B(
0
0
,
-6
-6
);
②画出t=2时,四边形ABEF沿EF折叠后的图形(不写画法);
(2)若CD交y轴于H点,求证:四边形DHEF为平行四边形;并求t为何值时,四边形DHEF为菱形(计算结果不需化简);
(3)设四边形DCEF落在第一象限内的图形面积为S,求S关于t的函数
表达式,并求出S的最大值.
(2010·钦州)如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为
(6,4)
(6,4)
;用含t的式子表示点P的坐标为
(t,
2
3
t)
(t,
2
3
t)
;
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的
1
3
?若存在,求出点T的坐标;若不存在,请说明理由.
(2010·娄底)如图,在梯形ABCD中,AB∥DC,AB=2,DC=10,AD=BC=5,点M、N分别在AD、BC上运动,并保持M
N∥AB,ME⊥DC,NF⊥DC,垂足分别为E、F.
(1)求梯形ABCD的面积;
(2)探究一:四边形MNFE的面积有无最大值?若有,请求出这个最大值;若无,请说明理由;
(3)探究二:四边形MNFE能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.
(2010·大庆)已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.
(1)根据题目所提供的信息,可求得b=
4
4
,a=
5
5
,m=
9
9
;
(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;
(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,并求出t的值;否则,请说明理由.
(2008·雅安)已知抛物线y=ax
2
+bx+c与y轴交于点(0,3a),对称轴为x=1.
(1)试用含a的代数式表示b、c.
(2)当抛物线与直线y=x-1交于点(2,1)时,求此抛物线的解析式.
(3)求当b(c+6)取得最大值时的抛物线的顶点坐标.
(2008·南京)已知二次函数y=x
2
+bx+c中,函数y与自变量x的部分对应值如下表:
x
…
-1
0
1
2
3
4
…
y
…
10
5
2
1
2
5
…
(1)求该二次函数的关系式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y
1
),B(m+1,y
2
)两点都在该函数的图象上,试比较y
1
与y
2
的大小.
(2003·黄石)二次函数y=x
2
+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),若△ABC的面积为9,求此二次函数的最小值.
第一页
上一页
97
98
99
100
101
下一页
最后一页
915295
915296
915297
915298
915299
915300
915301
915302
915303
915304