数学
为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆为3.1米,且BC=1米,CD=5米,请你根据所给出的数据求树高ED.
(2010·自贡)如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.
(2010·宁德)我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已
知装饰画的高度AD为0.66米,
求:(1)装饰画与墙壁的夹角∠CAD的度数(精确到1°);
(2)装饰画顶部到墙壁的距离DC(精确到0.01米).
(2009·陕西)在一次数学测验活动中,小明到操场测量旗杆AB的高度.他手拿一支铅笔MN,边观察边移动(铅笔MN始终与地面垂直).
如示意图,当小明移动到D点时,眼睛C与铅笔、旗杆的顶端M、A共线,同时,眼睛C与它们的底端N、B也恰好共线.此时,测得DB=50m,小明的眼睛C到铅笔的距离为0.65m,铅笔MN的长为0.16m,请你帮助小明计算出旗杆AB的高度(结果精确到0.1m).
(2009·毕节地区)如图,高高的路灯挂在学校操场旁边上方,高傲而明亮.王刚同学拿起一根2m长的竹竿去测量路灯的高度,他走到路灯旁的一个地方,点A竖起竹竿(AE表示),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走,向远处走出两个竹竿的长度(即4m)到点B,他又竖起竹竿(BF表示),这时竹竿的影长BD正好是一根竹竿的长度(即2m),此时,王刚同学抬头若有所思地说道:“噢,原来路灯有10m高呀”.你觉得王刚同学的判断对吗?若对,请给出解答,若不对,请说明理由.
(2008·陕西)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请
你在他们提供的测量工具中选出所需工具,设计一种测量方案.
(1)所需的测量工具是:
;
(2)请在下图中画出测量示意图;
(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.
(2008·庆阳)如图(1)是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于D.已知AD=15mm,DC=24mm,
OD=10mm.已知文件夹是轴对称图形,试利用图(2),求图(1)中A,B两点的距离(:
676
=26).
(2007·怀化)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.
(2006·盐城)如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).
(2005·陕西)已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点.
(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN.请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等;
(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等;
(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n.现计划把价格不同的两种花草种植在S
1
、S
2
、S
3
、S
4
四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由.
第一页
上一页
29
30
31
32
33
下一页
最后一页
170588
170589
170590
170591
170592
170593
170594
170595
170596
170597