题目:
观察以下一系列等式:
①1×2×3×4+1=5
2=(1
2+3×1+1)
2;
②2×3×4×5+1=11
2=(2
2+3×2+1)
2;
③3×4×5×6+1=19
2=(3
2+3×3+1)
2;
④
4×5×6×7+1=292=(42+3×4+1)2
4×5×6×7+1=292=(42+3×4+1)2
;…
(1)请你写出第④个等式;
(2)请用字母表示上面所发现的规律:
n(n+1)(n+2)(n+3)+1=(n2+3n+1)2
n(n+1)(n+2)(n+3)+1=(n2+3n+1)2
;
(3)利用你学过的方法,证明你所发现的规律.
答案
4×5×6×7+1=292=(42+3×4+1)2
n(n+1)(n+2)(n+3)+1=(n2+3n+1)2
解:(1)4×5×6×7+1=29
2=(4
2+3×4+1)
2;
(2)n(n+1)(n+2)(n+3)+1=(n
2+3n+1)
2;
(3)证明:左边=[n(n+3)][(n+1)(n+2)]+1
=(n
2+3n)(n
2+3n+2)+1
=n
4+6n
3+11n
2+6n+1;
右边=[(n
2+3n)+1]
2=n
4+6n
3+11n
2+6n+1,
∴左边=右边.
故答案为:(1)4×5×6×7+1=29
2=(4
2+3×4+1)
2;(2)n(n+1)(n+2)(n+3)+1=(n
2+3n+1)
2