试题
题目:
如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.
第一排 1
第二排 2 3
第三排 4 5 6
第五排 7 8 9 10
第六排 11 12 13 14 15
…
(1)表中第9行第2个数字是
38
38
;
(2)求第12行所有数字之和?
(3)求第n行的第一个数字和最后一个数字.(用含有“n”的式子表示)
答案
38
解:(1)∵第9排前面共有1+2+3+4+5+6+7+8=36个数,
∴第9行第1个数字是37,第9行第2个数字38;
故答案为38;
(2)第12行前面共有1+2+3+4+5+6+7+8+9+10+11=66个数,
∴第12行第1个数为67,最后一个数为78,
∴第12行所有数字之和=
12×(67+78)
2
=870;
(3)∵第n行前面共有1+2+3+…+n-1=
n(n-1)
2
,
∴第n行的第一个数字为
n(n-1)
2
+1=
n
2
-n+2
2
,最后一个数字为
n(n-1)
2
+1+n-1=
n
2
+n
2
.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
(1)观察数据得到每排数的个数等于排数,则先计算出第9排前面共有的数字,然后得到第9行第1个数字是37,第9行第2个数字38;
(2)先计算出第12行前面共有66个数,则第12行第1个数为67,最后一个数为78,然后计算这12个数据的和;
(3)先计算出第n行前面共有
n(n-1)
2
个数,然后可得到第n行的第一个数字和最后一个数字.
本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
规律型.
找相似题
有若干个数,第一个数记为a
v
,第二个记为a
2
,第三个记为a
多
,…,第n个记为a
n
,若a
v
=-
v
2
,从第二个数起,每个数都等于“v与它前面的数的差的倒数”,试计算a
2
=
2
多
2
多
,a
20vv
=
-
v
2
-
v
2
.
观察下列按一定规律排列的数:0,-1,2,0,-3,4,0,-5,6,0,-7,8,…,则第50个数是
-33
-33
.
小明在一本书中发现了下面三个奇怪的等式:
3+1
1
2
=3×1
1
2
;
8.2+1
5
36
=8.2×1
5
36
;
3
1
2
+1
2
5
=3
1
2
×1
2
5
他一一检验后发现它们都是正确的.小明想除了上述三个之外应该还有这样奇怪的式子,于是小明进一步研究,不但写出了很多这样奇怪的等式,还找到了内在的规律:如果一个数为
b
a
(b>a)
,另一个数为
b
b-a
b
b-a
时(用a,b表示),可以构成类似上述的奇怪等式.
a
3
=2×3
2
-3=3,a
2
=2×2
2
-3=7,a
3
=2×3
2
-3=37,a
的
=2×的
2
-3=33,据此,可以推导出计算a
n
的公式:a
n
=
2n
2
-3
2n
2
-3
,若a
n
=337,n=
33
33
.
探索规律:观察下面由※组成的图案和算式,
解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
(n+1)
2
(n+1)
2
;
(2)请用上述规律计算:41+43+45+…+77+79=
1200
1200
.