试题
题目:
观察下列等式:12×18=216;24×26=624;33×37=1221;43×47=2021;…;
(1)写出一个含有上述规律的等式;
(2)用含有m、n的式子表示上述规律(限两位数乘以两位数),并证明它的正确性.
答案
解:(1)只要满足十位数字相同,个位数字相加得10即可,如72×78=5616;
(2)(10m+n)×[10m+(10-n)]
=100m(m+1)+n(10-n),
证明:左边=100m
2
+100m-10mn+10mn+10n-n
2
=100m
2
+100m+10n-n
2
左边=右边,
∴原式成立.
解:(1)只要满足十位数字相同,个位数字相加得10即可,如72×78=5616;
(2)(10m+n)×[10m+(10-n)]
=100m(m+1)+n(10-n),
证明:左边=100m
2
+100m-10mn+10mn+10n-n
2
=100m
2
+100m+10n-n
2
左边=右边,
∴原式成立.
考点梳理
考点
分析
点评
规律型:数字的变化类;整式的混合运算.
(1)根据已知数据之间变化规律得出答案即可;
(2)利用(1)中发现的规律得出一般规律,并证明即可.
此题主要考查了数字变化规律,根据已知数据发现式子中的变与不变是解题关键.
找相似题
有若干个数,第一个数记为a
v
,第二个记为a
2
,第三个记为a
多
,…,第n个记为a
n
,若a
v
=-
v
2
,从第二个数起,每个数都等于“v与它前面的数的差的倒数”,试计算a
2
=
2
多
2
多
,a
20vv
=
-
v
2
-
v
2
.
观察下列按一定规律排列的数:0,-1,2,0,-3,4,0,-5,6,0,-7,8,…,则第50个数是
-33
-33
.
小明在一本书中发现了下面三个奇怪的等式:
3+1
1
2
=3×1
1
2
;
8.2+1
5
36
=8.2×1
5
36
;
3
1
2
+1
2
5
=3
1
2
×1
2
5
他一一检验后发现它们都是正确的.小明想除了上述三个之外应该还有这样奇怪的式子,于是小明进一步研究,不但写出了很多这样奇怪的等式,还找到了内在的规律:如果一个数为
b
a
(b>a)
,另一个数为
b
b-a
b
b-a
时(用a,b表示),可以构成类似上述的奇怪等式.
a
3
=2×3
2
-3=3,a
2
=2×2
2
-3=7,a
3
=2×3
2
-3=37,a
的
=2×的
2
-3=33,据此,可以推导出计算a
n
的公式:a
n
=
2n
2
-3
2n
2
-3
,若a
n
=337,n=
33
33
.
探索规律:观察下面由※组成的图案和算式,
解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
(n+1)
2
(n+1)
2
;
(2)请用上述规律计算:41+43+45+…+77+79=
1200
1200
.