试题
题目:
观察以下等式:
①
1×2=
1
3
×1×2×3
,
②
1×2+2×3=
1
3
×2×3×4
,
③
1×2+2×3+3×4=
1
3
×3×4×5
,
④
1×2+2×3+3×4+4×5=
1
3
×4×5×6
…
(1)比照上述规律,请你写出第⑤与第⑦个等式;
(2)1×2+2×3+3×4+…+n(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)
.
答案
1
3
n(n+1)(n+2)
解:(1)⑤1×2+2×3+3×4+4×5+5×6=
1
3
×5×6×7;
⑦1×2+2×3+3×4+4×5+5×6+6×7+7×8=
1
3
×7×8×9;
(2)1×2+2×3+3×4+…+n(n+1)=
1
3
n(n+1)(n+2).
故答案为:
1
3
n(n+1)(n+2).
考点梳理
考点
分析
点评
规律型:数字的变化类.
第一个式子最后一项是1×2,第二个式子最后一项是2×3,第三个式子最后一项是3×4,…依此类推,所以,第n个式子最后一项是n×(n+1),则第n个式子是1×2+2×3+3×4+…+n×(n+1),计算的结果是连续三个自然数的乘积的
1
3
,三个自然数为最后n,(n+1),(n+2)由此:
(1)直接写出第⑤与第⑦个等式;
(2)由以上规律写出即可.
此题考查算式的运算规律,找出一般算式的表示方式,利用一般规律解决问题即可.
找相似题
有若干个数,第一个数记为a
v
,第二个记为a
2
,第三个记为a
多
,…,第n个记为a
n
,若a
v
=-
v
2
,从第二个数起,每个数都等于“v与它前面的数的差的倒数”,试计算a
2
=
2
多
2
多
,a
20vv
=
-
v
2
-
v
2
.
观察下列按一定规律排列的数:0,-1,2,0,-3,4,0,-5,6,0,-7,8,…,则第50个数是
-33
-33
.
小明在一本书中发现了下面三个奇怪的等式:
3+1
1
2
=3×1
1
2
;
8.2+1
5
36
=8.2×1
5
36
;
3
1
2
+1
2
5
=3
1
2
×1
2
5
他一一检验后发现它们都是正确的.小明想除了上述三个之外应该还有这样奇怪的式子,于是小明进一步研究,不但写出了很多这样奇怪的等式,还找到了内在的规律:如果一个数为
b
a
(b>a)
,另一个数为
b
b-a
b
b-a
时(用a,b表示),可以构成类似上述的奇怪等式.
a
3
=2×3
2
-3=3,a
2
=2×2
2
-3=7,a
3
=2×3
2
-3=37,a
的
=2×的
2
-3=33,据此,可以推导出计算a
n
的公式:a
n
=
2n
2
-3
2n
2
-3
,若a
n
=337,n=
33
33
.
探索规律:观察下面由※组成的图案和算式,
解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
(n+1)
2
(n+1)
2
;
(2)请用上述规律计算:41+43+45+…+77+79=
1200
1200
.