试题
题目:
七年一班同学一起玩报数游戏,第一位同学从1开绐报数,当报到尾数是7或7的倍数的数时,则必须跳过该数报下一个数,如:
位置
一
二
三
四
五
六
七
八
九
十
十一
十二
十三
十四
十五
…
报出的数
1
2
3
4
5
6
8
9
10
11
12
13
15
16
18
…
按这种方法报数,在全班同学都准确报出的情况下,最后一位同学报出的数是61,则这个班有学生
48
48
人.
答案
48
解:∵根据游戏规则当报到尾数是7或7的倍数的数时,则必须跳过该数报下一个数,
∴尾数是7且小于61的数有:7,17,27,37,47.57;是7的倍数的数的有:14,21,28,35,42,49,56;
∴一共跳跃了13个数,所以本班共有:61-13=48(人)
故答案为:48.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
根据游戏规则当报到尾数是7或7的倍数的数时,则必须跳过该数报下一个数,可以把所有在范围内的数据找出去掉即是本班人数.
此题主要考查了数的规律,关键是按规律得出所有符合要求的数,并分析得出本班人数.
图表型.
找相似题
有若干个数,第一个数记为a
v
,第二个记为a
2
,第三个记为a
多
,…,第n个记为a
n
,若a
v
=-
v
2
,从第二个数起,每个数都等于“v与它前面的数的差的倒数”,试计算a
2
=
2
多
2
多
,a
20vv
=
-
v
2
-
v
2
.
观察下列按一定规律排列的数:0,-1,2,0,-3,4,0,-5,6,0,-7,8,…,则第50个数是
-33
-33
.
小明在一本书中发现了下面三个奇怪的等式:
3+1
1
2
=3×1
1
2
;
8.2+1
5
36
=8.2×1
5
36
;
3
1
2
+1
2
5
=3
1
2
×1
2
5
他一一检验后发现它们都是正确的.小明想除了上述三个之外应该还有这样奇怪的式子,于是小明进一步研究,不但写出了很多这样奇怪的等式,还找到了内在的规律:如果一个数为
b
a
(b>a)
,另一个数为
b
b-a
b
b-a
时(用a,b表示),可以构成类似上述的奇怪等式.
a
3
=2×3
2
-3=3,a
2
=2×2
2
-3=7,a
3
=2×3
2
-3=37,a
的
=2×的
2
-3=33,据此,可以推导出计算a
n
的公式:a
n
=
2n
2
-3
2n
2
-3
,若a
n
=337,n=
33
33
.
探索规律:观察下面由※组成的图案和算式,
解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
(n+1)
2
(n+1)
2
;
(2)请用上述规律计算:41+43+45+…+77+79=
1200
1200
.