试题
题目:
一列数1,-2,3,-4,5,-6,….①
(1)分别写出这列数的第10个数,第2011个数.
(2)求前100个数的和.
(3)另外有一列数3,-3,7,-7,11,-11,…. ②
观察第②行数与第①行数之间的关系,已知第①行数中第n个数为k,请写出第②行数中第n个数是
2k+1
2k+1
.(用k的代数式表示).
答案
2k+1
解:(1)这列数的第10个数为-10,第2011个数为2011;
(2)前100个数的和=1-2+3-4+5-6+…+99-100=-1×50=-50;
(3)第②行数中第n个数是2k+1.
故答案为2k+1.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
(1)根据个数据得到每个数的绝对值等于这个数的序号数,且序号是奇数的为正数,序号是偶数的为正数,由此得到第10个数为-10,第2011个数为2011;
(2)把前100个数从1开始每两个数分成一组,每组两个数的和为-1,则这100个的和为-1的50倍;
(3)观察①②两行数得到第②行中的数为第①行中相同序号的数的2倍加1.
本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
规律型.
找相似题
有若干个数,第一个数记为a
v
,第二个记为a
2
,第三个记为a
多
,…,第n个记为a
n
,若a
v
=-
v
2
,从第二个数起,每个数都等于“v与它前面的数的差的倒数”,试计算a
2
=
2
多
2
多
,a
20vv
=
-
v
2
-
v
2
.
观察下列按一定规律排列的数:0,-1,2,0,-3,4,0,-5,6,0,-7,8,…,则第50个数是
-33
-33
.
小明在一本书中发现了下面三个奇怪的等式:
3+1
1
2
=3×1
1
2
;
8.2+1
5
36
=8.2×1
5
36
;
3
1
2
+1
2
5
=3
1
2
×1
2
5
他一一检验后发现它们都是正确的.小明想除了上述三个之外应该还有这样奇怪的式子,于是小明进一步研究,不但写出了很多这样奇怪的等式,还找到了内在的规律:如果一个数为
b
a
(b>a)
,另一个数为
b
b-a
b
b-a
时(用a,b表示),可以构成类似上述的奇怪等式.
a
3
=2×3
2
-3=3,a
2
=2×2
2
-3=7,a
3
=2×3
2
-3=37,a
的
=2×的
2
-3=33,据此,可以推导出计算a
n
的公式:a
n
=
2n
2
-3
2n
2
-3
,若a
n
=337,n=
33
33
.
探索规律:观察下面由※组成的图案和算式,
解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
(n+1)
2
(n+1)
2
;
(2)请用上述规律计算:41+43+45+…+77+79=
1200
1200
.