试题
题目:
一个圆周上依次放有1,2,3,…,20共20个号码牌,随意选定一个号码牌(如8),从它开始,先把它拿掉,然后每隔一个拿掉一个(如依次拿掉8,10,12,…),并一直循环下去,直到剩余两个号码牌时停止,则最后剩余的两个号码的差的绝对值是
8或12
8或12
.
答案
8或12
解:要剩余两个号码牌,我们知道要进行三轮,第一,二轮号码牌都减半,第三轮号码牌减掉3个,每经过一轮,相邻号码牌差距拉开2倍,即第一轮后相邻号码牌差距为2,第二轮后相邻号码牌差距为4,第三轮后相邻号码牌差距为8,所以最终结果相邻号码牌差距为8(这个并不是数值上的差距,而是位置上的),即1,9或2,10或3,11…但由于20后面接的是1,2,3…所以结果也可能是13,1或14,2或15,3…,此时两个号码的差的绝对值是12.
所以最后剩余的两个号码的差的绝对值是8或12.
故答案为:8或12.
考点梳理
考点
分析
点评
规律型:数字的变化类.
我们每隔一个拿掉一个,若是先拿的是1,则一轮后只剩下偶数,由于上一轮最后拿掉的是19,所以偶数要先从2开始拿(隔一个20),这样就剩下4,8,12,16,20,由于上一轮最后拿掉的是18,所以要先从4开始拿(隔一个20),这样就剩下8,16,完毕,进而得出答案.
本题主要考查了数字变化类的一些简单问题,能够掌握其内在规律,并熟练求解.
找相似题
有若干个数,第一个数记为a
v
,第二个记为a
2
,第三个记为a
多
,…,第n个记为a
n
,若a
v
=-
v
2
,从第二个数起,每个数都等于“v与它前面的数的差的倒数”,试计算a
2
=
2
多
2
多
,a
20vv
=
-
v
2
-
v
2
.
观察下列按一定规律排列的数:0,-1,2,0,-3,4,0,-5,6,0,-7,8,…,则第50个数是
-33
-33
.
小明在一本书中发现了下面三个奇怪的等式:
3+1
1
2
=3×1
1
2
;
8.2+1
5
36
=8.2×1
5
36
;
3
1
2
+1
2
5
=3
1
2
×1
2
5
他一一检验后发现它们都是正确的.小明想除了上述三个之外应该还有这样奇怪的式子,于是小明进一步研究,不但写出了很多这样奇怪的等式,还找到了内在的规律:如果一个数为
b
a
(b>a)
,另一个数为
b
b-a
b
b-a
时(用a,b表示),可以构成类似上述的奇怪等式.
a
3
=2×3
2
-3=3,a
2
=2×2
2
-3=7,a
3
=2×3
2
-3=37,a
的
=2×的
2
-3=33,据此,可以推导出计算a
n
的公式:a
n
=
2n
2
-3
2n
2
-3
,若a
n
=337,n=
33
33
.
探索规律:观察下面由※组成的图案和算式,
解答问题:
1+3=4=2
2
1+3+5=9=3
2
1+3+5+7=16=4
2
1+3+5+7+9=25=5
2
(1)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
(n+1)
2
(n+1)
2
;
(2)请用上述规律计算:41+43+45+…+77+79=
1200
1200
.