试题

题目:
计算:
(1)
a2-1
a2+4a+4
÷
a+1
a+2

(2)(
x-2
x+2
-
x+2
x-2
)
x2-2x
x2

(3)(
x+2
x2-2x
-
x-1
x2-4x+4
x-4
x

(4)(
3
-
2
)0-[-
1
2
]2-2-2-(-1)3

答案
解:(1)原式=
(a+1)(a-1)
(a+2)2
×
a+2
a+1
=
a-1
a+2

(2)原式=
(x-2)2-(x+2)2
(x+2)(x-2)
×
x(x-2)
x2
=-
8
x+2

(3)原式=[
x+2
x(x-2)
-
x-1
(x-2)2
]
×
x
x-4
=
x-4
x(x-2)2
×
x
x-4
=
1
(x-2)2

(4)原式=1-0.25-0.25+1=2-0.5=1.5.
故答案为
a-1
a+2
-
8
x+2
1
(x-2)2
、1.5.
解:(1)原式=
(a+1)(a-1)
(a+2)2
×
a+2
a+1
=
a-1
a+2

(2)原式=
(x-2)2-(x+2)2
(x+2)(x-2)
×
x(x-2)
x2
=-
8
x+2

(3)原式=[
x+2
x(x-2)
-
x-1
(x-2)2
]
×
x
x-4
=
x-4
x(x-2)2
×
x
x-4
=
1
(x-2)2

(4)原式=1-0.25-0.25+1=2-0.5=1.5.
故答案为
a-1
a+2
-
8
x+2
1
(x-2)2
、1.5.
考点梳理
分式的混合运算;零指数幂;负整数指数幂.
(1)先把除法统一为乘法,再分解因式化简.(2)(3)先通分,然后进行四则运算.(4)先把每一部分分别计算,再求最后结果.
本题考查分式的混合运算,关键是通分,合并同类项,注意混合运算的运算顺序.
找相似题