试题

题目:
先化简,再求值:
(1)x (x+2)-(x+1)(x-1),其中x=-
1
2

(2)(x+3)2+(x+2)(x-2)-2x2,其中x=-
1
3

(3)
1
x+1
-
1
x2-1
÷
x+1
x2-2x+1
,其中x=
3
-1

答案
解:(1)x (x+2)-(x+1)(x-1)
=x2+2x-x2+1
=2x+1
当x=-
1
2
时,原式=0;

(2)(x+3)2+(x+2)(x-2)-2x2
=x2+6x+9+x2-4-2x2
=6x+5,
x=-
1
3
时,原式=3;
(3)
1
x+1
-
1
x2-1
÷
x+1
x2-2x+1

=
1
x+1
-
1
(x+1)(x-1)
×
(x-1)2
x+1

=
2
(x+1)2

x=
3
-1
时,原式=
2
3

解:(1)x (x+2)-(x+1)(x-1)
=x2+2x-x2+1
=2x+1
当x=-
1
2
时,原式=0;

(2)(x+3)2+(x+2)(x-2)-2x2
=x2+6x+9+x2-4-2x2
=6x+5,
x=-
1
3
时,原式=3;
(3)
1
x+1
-
1
x2-1
÷
x+1
x2-2x+1

=
1
x+1
-
1
(x+1)(x-1)
×
(x-1)2
x+1

=
2
(x+1)2

x=
3
-1
时,原式=
2
3
考点梳理
分式的化简求值;整式的混合运算—化简求值.
(1)(2)首先利用整式的乘法法则去掉括号,然后化简,最后代入数值计算即可求解;
(3)首先把分式通分、约分,然后化简,最后代入数值计算即可求解.
此题分别考查了整式的化简求值,分式的化简求值,解题的关键都是化简,然后代入数值计算即可求解.
计算题.
找相似题