试题

题目:
青果学院(2012·金华模拟)如图,∠AOB=60°,点P在∠AOB的角平分线上,OP=10cm,点E、F是∠AOB两边OA,OB上的动点,当△PEF的周长最小时,点P到EF距离是(  )



答案
B
青果学院解:作P关于OA的对称点,以及关于OB的对称点,连接两个对称点,交OA、OB分别于E、F,则此时△PEF的周长最小,
∵点P在∠AOB的角平分线上,
∴∠AOP=
1
2
∠AOB=30°,
∴直角△OPG中,PG=
1
2
OP=5cm.
∴PP1=2PG=10cm.
∵∠P1PP2=360°-90°-90°-60°=120°,
∴∠P1PO=60°,
∴∠P1=30°,
∴PM=
1
2
PP1=5cm.
故选B.
考点梳理
轴对称-最短路线问题.
作P关于OA的对称点,以及关于OB的对称点,连接两个对称点,交OA、OB分别于E、F,则此时△PEF的周长最小,则PM的长度就是所求的量,利用直角三角形的性质即可求解.
本题考查了直角三角形的性质:直角三角形中30度的锐角所对的直角边等于斜边的一半,以及最短路径问题,正确确定E、F的位置是关键.
压轴题.
找相似题