试题

题目:
青果学院已知:如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.
答案
(1)证明:∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.

青果学院(2)解:△PHD的周长不变为定值8.
证明:过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中,
∠APB=∠BPH
∠A=∠BQP
BP=BP

∴△ABP≌△QBP(AAS).
∴AP=QP,AB=QB.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴Rt△BCH≌Rt△BQH(HL).
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
(1)证明:∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.

青果学院(2)解:△PHD的周长不变为定值8.
证明:过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中,
∠APB=∠BPH
∠A=∠BQP
BP=BP

∴△ABP≌△QBP(AAS).
∴AP=QP,AB=QB.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴Rt△BCH≌Rt△BQH(HL).
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
考点梳理
翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.
(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
此题主要考查了翻折变换的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.
找相似题