试题

题目:
青果学院如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,则BE=
0.8cm
0.8cm

答案
0.8cm

解:∵∠ACB=90°,BE⊥CE,AD⊥CE,
∴∠E=∠ADC=∠BCA=90°,
∴∠BCE+∠ACD=90°,∠ACD+∠CAD=90°,
∴∠BCE=∠CAD,
在△ACD和△CBE中,
∠CAD=∠BCE
∠ADC=∠E
AC=BC

∴△ACD≌△CBE(AAS),
∴CE=AD=2.5cm,BE=CD,
∵DE=1.7cm,
∴BE=CD=2.5cm-1.7cm=0.8cm,
故答案为:0.8cm.
考点梳理
全等三角形的判定与性质.
求出∠E=∠ADC=∠BCA=90°,求出∠BCE=∠CAD,根据AAS证△ACD≌△CBE,推出CE=AD=2.5cm,BE=CD,即可得出答案.
本题考查了三角形的内角和定理,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.
找相似题