试题

题目:
青果学院如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED,延长BE交AD于点F,若∠DEB=140°,则∠AFE的度数为:
65
65
°.
答案
65

解:∵四边形ABCD是正方形,
∴CD=CB,∠DCA=∠BCA,
∵CE=CE,
∴△BEC≌△DEC,
∴∠DEC=∠BEC=
1
2
∠DEB=70°,
∴∠AEF=∠BEC=70°,
∵∠DAC=45°,
∴∠AFE=180°-70°-45°=65°.
故答案是65°.
考点梳理
正方形的性质;平行线的性质;全等三角形的判定与性质.
先由正方形的性质得出CD=CB,∠DCA=∠BCA,根据SAS证出△BEC≌△DEC,再由全等三角形的对应角相等得出∠DEC=∠BEC=70°,然后根据对顶角相等求出∠AEF,根据正方形的性质求出∠DAC,最后根据三角形的内角和定理即可求出∠AFE的度数.
本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的内角和定理,对顶角相等等知识点的理解和掌握,能够熟练地运用这些性质进行推理是解题的关键.
找相似题