试题

题目:
青果学院如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.
求证:CE=
1
2
BD.
答案
青果学院证明:延长CE、BA交于点F.
∵CE⊥BD于E,∠BAC=90°,
∴∠ABD=∠ACF.
在△ABD与△ACF中,
∠ABD=∠ACF
AB=AC
∠BAD=∠CAF=90°

∴△ABD≌△ACF(ASA),
∴BD=CF.
∵BD平分∠ABC,
∴∠CBE=∠FBE.
在△BCE与△BFE中,
∠CBE=∠FBE
BE=BE
∠BEC=∠BEF=90°

∴△BCE≌△BFE(ASA),
∴CE=EF,
即CE=
1
2
CF,
∴CE=
1
2
BD.
青果学院证明:延长CE、BA交于点F.
∵CE⊥BD于E,∠BAC=90°,
∴∠ABD=∠ACF.
在△ABD与△ACF中,
∠ABD=∠ACF
AB=AC
∠BAD=∠CAF=90°

∴△ABD≌△ACF(ASA),
∴BD=CF.
∵BD平分∠ABC,
∴∠CBE=∠FBE.
在△BCE与△BFE中,
∠CBE=∠FBE
BE=BE
∠BEC=∠BEF=90°

∴△BCE≌△BFE(ASA),
∴CE=EF,
即CE=
1
2
CF,
∴CE=
1
2
BD.
考点梳理
全等三角形的判定与性质.
延长CE、BA交于点F.根据等角的余角相等,得∠ABD=∠ACF;再根据ASA可以证明△ABD≌△ACF,则BD=CF;根据ASA可以证明△BCE≌△BFE,则CE=EF,从而证明结论.
此题考查了全等三角形的性质和判定;作出辅助线,证明三角形全等是正确解决本题的关键.
证明题.
找相似题