试题
题目:
如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A=∠A′,④∠A′CA=∠B′CB中.请用其中三个作为条件,余下一个作为结论,编一道可解的数学问题,并写出解答过程.
答案
解:选择②③④,证明①成立.
∵∠A′CA=∠B′CB,
∴∠A′CA+∠ACB′=∠B′CB+∠ACB′,
∴∠BCA=∠B′CA′.
在△ABC和△A′B′C中,
∠A=∠A′
AC=A′C
∠ACB=∠ACB′
,
∴△ABC≌△A′B′C(ASA),
∴BC=B′C.
解:选择②③④,证明①成立.
∵∠A′CA=∠B′CB,
∴∠A′CA+∠ACB′=∠B′CB+∠ACB′,
∴∠BCA=∠B′CA′.
在△ABC和△A′B′C中,
∠A=∠A′
AC=A′C
∠ACB=∠ACB′
,
∴△ABC≌△A′B′C(ASA),
∴BC=B′C.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
根据全等三角形的判定方法,可选择两角一边,证明△ABC≌△A′B′C,可用ASA或AAS.
本题是一道开放题,考查了全等三角形的判定方法:SSS、SAS、AAS、ASA,对于直角三角形还有HL.
开放型.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?