试题
题目:
(2013·大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.
(1)求证:CF=DG;
(2)求出∠FHG的度数.
答案
(1)证明:∵在△CBF和△DBG中,
BC=BD
∠CBF=∠BDG=60°
BF=BG
,
∴△CBF≌△DBG(SAS),
∴CF=DG;
(2)解:∵△CBF≌△DBG,
∴∠BCF=∠BDG,
又∵∠CFB=∠DFH,
∴∠DHF=∠CBF=60°,
∴∠FHG=180°-∠DHF=180°-60°=120°.
(1)证明:∵在△CBF和△DBG中,
BC=BD
∠CBF=∠BDG=60°
BF=BG
,
∴△CBF≌△DBG(SAS),
∴CF=DG;
(2)解:∵△CBF≌△DBG,
∴∠BCF=∠BDG,
又∵∠CFB=∠DFH,
∴∠DHF=∠CBF=60°,
∴∠FHG=180°-∠DHF=180°-60°=120°.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;
(2)根据全等三角形的对应角相等,即可证得∠DHF=∠CBF=60°,从而求解.
本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?