试题
题目:
(2012·滨州)我们知道“连接三角形两边中点的线段叫三角形的中位线”,“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似的,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线.通过观察、测量,猜想EF和AD、BC有怎样的位置和数量关系?并证明你的结论.
答案
解:结论为:EF∥AD∥BC,EF=
1
2
(AD+BC).理由如下:
连接AF并延长交BC于点G.
∵AD∥BC,
∴∠DAF=∠G,
在△ADF和△GCF中,
∠DAF=∠G
∠DFA=∠CFG
DF=FC
,
∴△ADF≌△GCF(AAS),
∴AF=FG,AD=CG.
又∵AE=EB,
∴EF∥BG,EF=
1
2
BG,
即EF∥AD∥BC,EF=
1
2
(AD+BC).
解:结论为:EF∥AD∥BC,EF=
1
2
(AD+BC).理由如下:
连接AF并延长交BC于点G.
∵AD∥BC,
∴∠DAF=∠G,
在△ADF和△GCF中,
∠DAF=∠G
∠DFA=∠CFG
DF=FC
,
∴△ADF≌△GCF(AAS),
∴AF=FG,AD=CG.
又∵AE=EB,
∴EF∥BG,EF=
1
2
BG,
即EF∥AD∥BC,EF=
1
2
(AD+BC).
考点梳理
考点
分析
点评
专题
梯形中位线定理;全等三角形的判定与性质;三角形中位线定理.
连接AF并延长交BC于点G,则△ADF≌△GCF,可以证得EF是△ABG的中位线,利用三角形的中位线定理即可证得.
本题猜想并且证明了梯形的中位线定理,通过辅助线转化成三角形的中位线的问题.
探究型.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?