试题
题目:
如图,D是△ABC的BC边上一点且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.
求证:∠C=∠BAE.
答案
证明:延长AE到F,使EF=AE,连接DF,
∵AE是△ABD的中线
∴BE=ED,
在△ABE与△FDE中
∵
BE=DE
∠AEB=∠DEF
AE=EF
,
∴△ABE≌△FDE(SAS),
∴AB=DF,∠BAE=∠EFD,
∵∠ADB是△ADC的外角,
∴∠DAC+∠ACD=∠ADB=∠BAD,
∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,
∴∠EFD+∠EAD=∠DAC+∠ACD,
∴∠ADF=∠ADC,
∵AB=DC,∴DF=DC,
在△ADF与△ADC中
∵
AD=AD
∠ADF=∠ADC
FD=DC
,
∴△ADF≌△ADC(SAS)
∴∠C=∠AFD=∠BAE.
证明:延长AE到F,使EF=AE,连接DF,
∵AE是△ABD的中线
∴BE=ED,
在△ABE与△FDE中
∵
BE=DE
∠AEB=∠DEF
AE=EF
,
∴△ABE≌△FDE(SAS),
∴AB=DF,∠BAE=∠EFD,
∵∠ADB是△ADC的外角,
∴∠DAC+∠ACD=∠ADB=∠BAD,
∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,
∴∠EFD+∠EAD=∠DAC+∠ACD,
∴∠ADF=∠ADC,
∵AB=DC,∴DF=DC,
在△ADF与△ADC中
∵
AD=AD
∠ADF=∠ADC
FD=DC
,
∴△ADF≌△ADC(SAS)
∴∠C=∠AFD=∠BAE.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;全等三角形的判定与性质.
延长AE到F,使EF=AE,连接DF,可证明△ABE≌△FDE,则∠BAE=∠EFD,∠B=∠EDF,再由外角的性质得出∠ADF=∠ADC,则△ADF≌△ADC(SAS),则∠AFD=∠C,从而得出∠C=∠BAE.
本题考查了全等三角形的判定和性质,解题的关键是证明两个三角形全等.
证明题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?