试题
题目:
如图①,在正方形ABCD中,点P是CD上一动点,连接PA,分别过点B,D作BE⊥PA,DF⊥PA,垂足分别为E,F.
(1)求证:BE-DF=EF;
(2)如图②,若点P在DC的延长线上,其余条件不变,则BE,DF,EF有怎样的数量关系
DF-BE=EF
DF-BE=EF
(不用证明)
(3)如图③,若点P在CD的延长线上,其余条件不变,画出图形,写出此时BE,DF,EF之间的数量关系,并证明你的结论.
答案
DF-BE=EF
(1)证明:∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∵DF⊥AP,BE⊥AP,
∴∠AFD=∠BEA=90°,
∴∠DAF+∠BAE=90°,∠BAE+∠ABE=90°,
∴∠DAF=∠ABE,
在△DAF和△ABE中
∠DAF=∠ABE
∠AFD=∠BEA
AD=AB
∴△DAF≌△ABE(AAS),
∴AF=BE,AE=DF,
∵AF-AE=EF,
∴BE-DF=EF;
(2)解:DF-BE=EF,
故答案为:DF-BE=EF;
(3)BE+DF=EF,
证明:∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∵DF⊥AP,BE⊥AP,
∴∠AFD=∠BEA=90°,
∴∠DAF+∠BAE=90°,∠BAE+∠ABE=90°,
∴∠DAF=∠ABE,
在△DAF和△ABE中
∠DAF=∠ABE
∠AFD=∠BEA
AD=AB
∴△DAF≌△ABE(AAS),
∴AF=BE,AE=DF,
∵AF+AE=EF,
∴BE+DF=EF.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
(1)根据正方形性质得出AD=AB,∠DAB=90°,求出∠AFD=∠BEA=90°,∠DAF=∠ABE,根据AAS证△DAF≌△ABE,推出AF=BE,AE=DF,即可得出答案;
(2)根据AAS证△DAF≌△ABE,推出AF=BE,AE=DF,即可得出答案;
(3)根据正方形性质得出AD=AB,∠DAB=90°,求出∠AFD=∠BEA=90°,∠DAF=∠ABE,根据AAS证△DAF≌△ABE,推出AF=BE,AE=DF,即可得出答案.
本题考查了正方形的性质,全等三角形的性质和判定的应用,关键是能推出△DAF≌△ABE,证明过程类似.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?