试题
题目:
如图,在正方形ABCD中,E为CD上一动点,连AE交对角线BD于F,过F作FG⊥AE交BC于G.
(1)求证:AF=FC;
(2)求证:∠FAG=45°.
答案
证明:(1)∵正方形ABCD中,BD是对角线,
∴AD=DC,∠1=∠2,
在△ADF和△DFC中,
AD=DC
∠1=∠2
DF=DF
,
∴△ADF≌△DFC(SAS),
∴AF=FC,
(2)∵FG⊥AE,
∴∠AFG=90°,
∵∠ABC=90°,
∴∠3+∠4=180,
∵∠4+∠5=180,
∴∠3=∠5,
∵△ADF≌△DFC,
∴∠6=∠7,
∵∠3+∠7=∠6+∠8=90°.
∴∠5=∠8,
∴FG=FC,
∵AF=FC,
∴AF=FG,
∵FG⊥AE,
∴∠FAG=45°.
证明:(1)∵正方形ABCD中,BD是对角线,
∴AD=DC,∠1=∠2,
在△ADF和△DFC中,
AD=DC
∠1=∠2
DF=DF
,
∴△ADF≌△DFC(SAS),
∴AF=FC,
(2)∵FG⊥AE,
∴∠AFG=90°,
∵∠ABC=90°,
∴∠3+∠4=180,
∵∠4+∠5=180,
∴∠3=∠5,
∵△ADF≌△DFC,
∴∠6=∠7,
∵∠3+∠7=∠6+∠8=90°.
∴∠5=∠8,
∴FG=FC,
∵AF=FC,
∴AF=FG,
∵FG⊥AE,
∴∠FAG=45°.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
(1)根据正方形的性质证明△ADF≌△DFC即可,
(2)因为FG⊥AE,若证明∠FAG=45°,则可证明AF=FG即可.
考查了正方形的性质,全等三角形的判定与性质,综合题,但难度中等.
证明题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?