答案
证明:(1)∵BE⊥AC、CF⊥AB,DE=DF,
∴AD是∠BAC的角平分线;
(2)∵BE⊥AC、CF⊥AB,
∴∠DFB=∠DEC=90°,∠BDF=∠CDE,
∴∠B=∠C,
∵AD是∠BAC的角平分线,
∴在△ABD与△ACD中,
,
∴△ABD≌△ACD,
∴AB=AC.
证明:(1)∵BE⊥AC、CF⊥AB,DE=DF,
∴AD是∠BAC的角平分线;
(2)∵BE⊥AC、CF⊥AB,
∴∠DFB=∠DEC=90°,∠BDF=∠CDE,
∴∠B=∠C,
∵AD是∠BAC的角平分线,
∴在△ABD与△ACD中,
,
∴△ABD≌△ACD,
∴AB=AC.